Deformations of special geometry and the holomorphic anomaly equation

Gabriel Lopes Cardoso

Iberian Strings 2015

with Bernard de Wit and Swapna Mahapatra, arXiv:1406.5478

Introduction

In supersymmetric field theories and string theories:

class of terms in effective action that play a special role:

F-terms.

Example: Type II superstring theory on $M_4 \times CY_3$

N=2 supersymmetry in four dimensions.

For every integer $g \ge 0$: \exists F-term at precisely g-loop order in string perturbation theory, schematically

$$\int d^4x \, d^4\theta \, \sum_{g \ge 0} F^{(g)}(Y^I) (W^2)^g$$

Y': conical affine special Kähler manifold $\mathcal{M}, \quad Y' \to \lambda \ Y', \ \lambda \in \mathbb{C}^*, \ I = 0, \dots, n = h^{1,1} \ (\text{or } h^{2,1})$

Introduction

Special Kähler geometry. de Wit, van Proeyen

 $F^{(0)}(Y)$ determines Kähler metric $N_{IJ}=2\operatorname{Im}\left(\partial^2 F^{(0)}/\partial Y^I\partial Y^J\right)$.

Projective special Kähler manifold $\bar{\mathcal{M}} = \mathcal{M}/\mathbb{C}^* \quad (t^l = Y^l/Y^0).$

Assemble:
$$g \ge 1$$
 $w(Y) = \sum_{g=1}^{\infty} F^{(g)}(Y)$

Special significance of F-terms:

- determine entropy of half-BPS black holes
 OSV, 2004
- $F^{(g)}$ topological string amplitudes.

Actually, the $F^{(g)}$ are not quite holomorphic $(g \ge 1)$:

holomorphic anomaly equation (recursive relation, $g \ge 2$)

Bershadsky, Cecotti, Ooguri, Vafa, 1993

Deformed special geometry

Q1: what is the precise relation between TST and the LEEA?

Q2: Consistent extension of special geometry for incorporating non-holomorphic corrections encoded in $F^{(g)}$, $g \ge 1$?

Q2: deformed special geometry, based on

$$F(\,Y,\,\bar{Y})=F^{(0)}(\,Y)+2i\,\Omega(\,Y,\,\bar{Y})\;,\quad\Omega\quad\mathrm{real}$$

Symplectic $Sp(2(n+1),\mathbb{R})$ -transformations act on

$$(Y^{I}, F_{I})$$
 , $F_{I} = \frac{\partial F(Y, \overline{Y})}{\partial Y^{I}}$, $I = 0, \dots, n$

LEEA. When Ω harmonic: Wilsonian limit

$$\Omega(Y, \bar{Y}) = w(Y) + \bar{w}(\bar{Y})$$

Natural deformation leads to perturbative topological string.

Deformed special geometry

• Q1: Generalized Hesse potential $H(\phi, \chi)$ Freed 1997

$$\phi^I = Y^I + \bar{Y}^I \qquad , \qquad \chi_I = F_I + \bar{F}_I$$

Obtained by Legendre transform with respect to $Y' - \bar{Y}'$:

$$H(\phi,\chi) = 4 \Big[\text{Im} F^{(0)}(Y) + \Omega(Y,\bar{Y}) \Big] + i \chi_I (Y - \bar{Y})^I$$

Significance:

- ► *H* 'Hamiltonian' (Legendre transform of LEEA), symplectic function $\longrightarrow \Omega$ transforms in prescribed, non-trivially way.
- Want to understand the structure of the Hesse potential:

a unique subsector captures perturbative topological string.

Evaluating the Hesse potential

• Q1: New variables:

$$\begin{pmatrix} \phi^{l} \\ \chi_{l} \end{pmatrix} = 2 \operatorname{Re} \begin{pmatrix} Y^{l} \\ F_{l}(Y, \bar{Y}) \end{pmatrix} = 2 \operatorname{Re} \begin{pmatrix} \mathcal{Y}^{l} \\ F_{l}^{(0)}(\mathcal{Y}) \end{pmatrix}$$

 Y^{I} : sugra variables \mathcal{Y}^{I} : TST variables

Evaluate *H* in terms of $\mathcal{Y}^I \Rightarrow \text{expansion in powers of } \Omega(\mathcal{Y}, \bar{\mathcal{Y}}).$

▶ *H* as series of symplectic functions, $H = \sum_{k=0}^{\infty} H^{(k)}(\mathcal{Y}, \bar{\mathcal{Y}})$

$$egin{align} H^{(1)} &= 4\Omega - 4 \emph{N}^{IJ} \left(\Omega_I \Omega_J + \Omega_{ar{I}} \Omega_{ar{J}}
ight) + \mathcal{O}(\Omega^3) \ N_{IJ} &= -i \left(F_{IJ}^{(0)} - ar{F}_{ar{I}ar{J}}^{(0)}
ight) \end{split}$$

• Pick Ω : non-holomorphic term whose variation is harmonic:

$$\Omega(\mathcal{Y}, \bar{\mathcal{Y}}) = w(\mathcal{Y}) + \bar{w}(\bar{\mathcal{Y}}) + \frac{\alpha}{\alpha} \ln \det N_{iJ} + \mathcal{O}(\alpha^2) \quad , \quad \frac{\alpha}{\alpha} \in \mathbb{R}$$

The holomorphic anomaly equation

Expanding $H^{(1)}$ in powers of (w, α) :

$$H^{(1)} = 4 \Big[F^{(1)}(\mathcal{Y}, \bar{\mathcal{Y}}) + \Big(F^{(2)}(\mathcal{Y}, \bar{\mathcal{Y}}) + \text{h.c.} \Big) + \Big(F^{(3)}(\mathcal{Y}, \bar{\mathcal{Y}}) + \text{h.c.} \Big) \\ + 4 \alpha D_{I} F_{J}^{(1)} N^{IK} N^{JL} \bar{D}_{\bar{K}} \bar{F}_{\bar{L}}^{(1)} + \mathcal{O}(\alpha^{4}) \Big]$$

 $F^{(g)}$ are symplectic functions. $F^{(1)} \propto \alpha \ln \det N_{IJ}$. For $g \geq 2$: polynomials in N^{IJ} . Satisfy the holomorphic anomaly equation of topological string theory,

$$\partial_{\bar{I}}F^{(g)} = i\,\bar{F}^{(0)}_{\bar{I}\bar{P}\bar{Q}}N^{PJ}N^{QK}\left(2\alpha\,D_{J}\partial_{K}F^{(g-1)} + \sum_{r=1}^{g-1}\partial_{J}F^{(r)}\partial_{K}F^{(g-r)}\right)$$

where $\partial_{\bar{l}}F^{(g)}=rac{\partial F^{(g)}(\mathcal{Y},\bar{\mathcal{Y}})}{\partial \bar{\mathcal{Y}}^{l}},$ etc.

Outlook: Perturbative TST captured by $H^{(1)}$. Formal series in inverse powers of $(\mathcal{Y}^0)^2$. Requires non-perturbative completion. RCS's talk.