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� Cross section data for a wide range of processes shows
evidence for power law behaviour with s [Donnachie,
Landshoff]

� This is evidence for so called soft Pomeron exchange, with
the power s0.08
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At the same time HERA, the largest electron - proton collider
ever built, and operated from 1992-2007 collected a wealth of
small x data. Two crucial (related) discoveries:

� Structure functions for many different processes (DIS,
DVCS, VM production...) show a power growth with 1/x.

� The same, universal gluon distribution functions describe
these processes, and gluons dominate at small x.

� These point to a universal Pomeron exchange as the
dominant process.

� The BFKL equation sums the leading log 1
x diagrams for

interaction of gluon on gluon, and leads to power
behaviour for the cross section - QCD Pomeron.

� This perturbative QCD approach works at high Q2, and the
goal is to extend it as much as possible into the low Q2

region, typically up to somewhere of the order
Q2 = 1− 4GeV2.

� However the large Q2 data shows evidence for a power
closer to s0.4, the so called hard Pomeron.
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� Hence we have a long standing question, are these
objects different or the same, and if the same what is the
relation between them?

� We will attempt to answer this question using AdS/QCD
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� So what is the Pomeron?
� We start by expanding the 2→ 2 amplitude in a partial

wave expansion

A(s, t) = 16π
∞
∑

j=0

(2j+ 1)Aj(t)Pj(cosθt),

� In the Regge limit, s� t,

Pj(1 +
2s

t
)→

Γ(2j+ 1)

Γ2(j+ 1)
(
s

2t
)j s f (t)s j.

� Giving us for the exchange of a spin j particle

A(s, t) s s j, σtot s sj−1 .

� Each term is more and more divergent, we need to sum
all of them to get a finite result.
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� We need to start where the sum is well defined,
t > 4m2, s < 0, |cosθ| ≤ 1, and analytically continue.

� However, it turns out that Aj(t) does not have a unique
analytic continuation.

� Hence

A(s, t) = 8π
�

∞
∑

j=0

(2j+ 1)A+
j (t)(Pj(zt) + Pj(−zt))

+
∞
∑

j=0

(2j+ 1)A−
j

(t)(Pj(zt)− Pj(−zt))
�

� This is the origin of the even and odd signature
amplitudes.
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� We can now analytically continue. After performing the
Sommerfeld-Watson transform we would get

A±(s, t) s (1± e−iπα
±(t))β(t)(

s

s0
)α
±(t).

� α(t) is the term with the largest value of ℜαi(t)
� Amplitude corresponds to an exchange of a whole

trajectory of particles α±(t) .
� Equivalently, we are exchanging a ‘Regge trajectory’ -

object with spin α±(t).
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� This will give us a sum in powers of s. At high energy, we
can keep just the leading term

A±(s, t) s (1± e−iπα
±(t))β(t)(

s

s0
)α
±(t).

� Equivalently, we are exchanging a ‘Regge trajectory’ -
object with spin α±(t).

�

� The trajectories are (approximately) linear, and for the
soft Pomeron we have (from experiment)

α(t) = j0 + α′ t , j0 = 1.08, α′ = 0.25GeV−2 .
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BPST Pomeron
At strong coupling the Pomeron was first introduced by Brower,
Polchinski, Strassler and Tan, 2006.

� They show that the Pomeron emerges as the Regge
trajectory of the graviton. We can introduce a vertex
operator

VP(j,±) = (∂X±∂X±)
j
2e∓ik·Xϕ±j(r).

� This operator must satisfy the on-shell condition.

[
j− 2

2
−
α′

4
∆j]e

∓ik·Xϕ±j(r) = 0

� where ∆j = (r/R)j(∆0)(r/R)−j. And ∆0 is the scalar
Laplacian in curved space.

� This leads to the propagator of the Pomeron with intercept

j0 = 2−
2
p
λ
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� Can also be applied to other Regge trajectories, e.g.
Odderon [Brower, MD, Tan 2008; Brower, Costa, MD,
Raben, Tan 2014].

� The weak and strong coupling Pomeron exchange kernels
have a remarkably similar form.

� At t = 0
Weak coupling:

K(k⊥, k
′
⊥, s) =

sj0
p

4πD logs
e−(logk⊥−logk′⊥)2/4D logs

j0 = 1 +
log2

π2
λ, D =

14ζ(3)

π
λ/4π2

Strong coupling:

K(z, z′, s) =
sj0

p

4πD logs
e−(logz−logz′)2/4D logs

j0 = 2−
2
p
λ
, D =

1

2
p
λ
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We can apply these methods to calculate the amplitude for
any process where Pomeron exchange dominates.

� Eikonal approximation in AdS space (Brower, Strassler,
Tan; Cornalba,Costa,Penedones)

A(s, t) = 2is

∫

d2le−il⊥ ·q⊥
∫

dzdz̄ P13(z)P24(z̄)(1− eiχ(s,b,z,z̄))

� Single Pomeron exchange would correspond to expanding
the above to first order in χ.

� To study different processes, we just provide different
wavefunction for the external states.

� Already applied to DIS [Brower, MD, Sarcevic, Tan], DVCS
[Costa, MD] and vector meson production [Costa, MD,
Evans].



We can apply these methods to calculate the amplitude for
any process where Pomeron exchange dominates.

� Eikonal approximation in AdS space (Brower, Strassler,
Tan; Cornalba,Costa,Penedones)

A(s, t) = 2is

∫

d2le−il⊥ ·q⊥
∫

dzdz̄ P13(z)P24(z̄)(1− eiχ(s,b,z,z̄))

� Single Pomeron exchange would correspond to expanding
the above to first order in χ.

� To study different processes, we just provide different
wavefunction for the external states.

� Already applied to DIS [Brower, MD, Sarcevic, Tan], DVCS
[Costa, MD] and vector meson production [Costa, MD,
Evans].



We can apply these methods to calculate the amplitude for
any process where Pomeron exchange dominates.

� Eikonal approximation in AdS space (Brower, Strassler,
Tan; Cornalba,Costa,Penedones)

A(s, t) = 2is

∫

d2le−il⊥ ·q⊥
∫

dzdz̄ P13(z)P24(z̄)(1− eiχ(s,b,z,z̄))

� Single Pomeron exchange would correspond to expanding
the above to first order in χ.

� To study different processes, we just provide different
wavefunction for the external states.

� Already applied to DIS [Brower, MD, Sarcevic, Tan], DVCS
[Costa, MD] and vector meson production [Costa, MD,
Evans].



We can apply these methods to calculate the amplitude for
any process where Pomeron exchange dominates.

� Eikonal approximation in AdS space (Brower, Strassler,
Tan; Cornalba,Costa,Penedones)

A(s, t) = 2is

∫

d2le−il⊥ ·q⊥
∫

dzdz̄ P13(z)P24(z̄)(1− eiχ(s,b,z,z̄))

� Single Pomeron exchange would correspond to expanding
the above to first order in χ.

� To study different processes, we just provide different
wavefunction for the external states.

� Already applied to DIS [Brower, MD, Sarcevic, Tan], DVCS
[Costa, MD] and vector meson production [Costa, MD,
Evans].



We can apply these methods to calculate the amplitude for
any process where Pomeron exchange dominates.

� Eikonal approximation in AdS space (Brower, Strassler,
Tan; Cornalba,Costa,Penedones)

A(s, t) = 2is

∫

d2le−il⊥ ·q⊥
∫

dzdz̄ P13(z)P24(z̄)(1− eiχ(s,b,z,z̄))

� Single Pomeron exchange would correspond to expanding
the above to first order in χ.

� To study different processes, we just provide different
wavefunction for the external states.

� Already applied to DIS [Brower, MD, Sarcevic, Tan], DVCS
[Costa, MD] and vector meson production [Costa, MD,
Evans].



F2



Effective Pomeron Intercept

F2 s (
1

x
)εeff
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We have a very good agreement with experiment, but the hard-
wall model has some problems as well, for example no running
coupling. Hence we will try to use the Gursoy-Kiritsis-Nitti
model, which is more similar to real world QCD.

� This is a phenomenologica 5D dilaton-gravity model
starting from the action

S = 2κ2
∫

d5x
p

−g
�

R−
4

3
(∂ϕ)2 +V(ϕ)

�

� The potential V(ϕ) contains two free parameters and is
constructed to match the perturbative QCD β function.

� It reproduces the heavy quark-antiquark linear potential,
� the glueball spectrum from lattice simulations
� thermodynamic properties of QGP (bulk viscosity, drag

force and jet quenching parameters).
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� It reproduces the heavy quark-antiquark linear potential,
� the glueball spectrum from lattice simulations
� thermodynamic properties of QGP (bulk viscosity, drag

force and jet quenching parameters).
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� We construct the Pomeron propagator in this model by
starting from the spin J equation of motion
�

(D2 − 2∂bϕDb −
2

α′
(J− 2))ga1bga2c + JRa1ba2c

�

hbc
a3...aJ

= 0

� This is an approximation for even spin states lying on the
trajectory of the graviton. We only need the leading
component in the Regge limit, which is either the ++ or
the −−.

� We then sum over all even J and perform the
Sommerfeld-Watson transformation from Regge theory
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� Problem reduces to a J dependent Schrodinger potential.
There are poles in the J plane at

t = tn(J) =⇒ J = jn(t)

� The propagator is expressed as a sum of eigenfunctions

T(s, t) ∼
∑

n

�

e−A(z)−A(z′)s
�jn(t)

ψn(z)ψ∗
n

(z′)

� We obtained approximately linear Regge trajectories. We
adjust one parameter to fix the intercept of the first
trajectory, and we get the slope as well as the intercepts
and slopes of all the other trajectories:

j1(t) = 1.08+0.21t, j2(t) = 0.433+0.17t, j3(t) = −0.471+0.13t ...
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This matches well with the soft Pomeron seen in total cross
sections



Is the running between the soft and the hard pomeron the
effect of adding the subleading Regge trajectories?

Possible, but still work in progress...



Thank You!
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