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Introduction

Unimodular Gravity is a truncation of General Relativty where the spacetime
metric is unimodular,

g̃ ≡ det g̃µν =−1

It has the nice property that the vacuum energy does not couple to
gravitation.

S ≡
∫

dnx

(
− 1

2κ2
R[g̃ ] +

1

2
g̃µν

∂µ ψ∂ν ψ−V (ψ)

)
Due to the unimodular metric the full diffeomorphism invariance is broken to
a subgroup with unit jacobian; TDiff (i.e. the generating vectors are
transverse ∂µ ξ µ = 0).
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The fact that full diffeomoporhism invariance is broken is a technical issue since in
order to formulate a path integral one should integrate over constrained variables.

Dgµν with gµν
δgµν = 0

There are several ways of solve this constrain,

By adding a Lagrange multiplier W. G. Unruh, Phys. Rev. D 40, 1048 (1989).

Introducing a gauge 3-form M. Henneaux and C. Teitelboim, Phys. Lett. B
222, 195 (1989).

Formulating the theory in terms of an unconstrained metric gµν by adding
Weyl invariance

g̃µν = g−
1
n gµν

E. Alvarez, D. Blas, J. Garriga and E. Verdaguer,
Nucl. Phys. B 756, 148 (2006)
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Flat Space

The most general action principle for a spin two field

L ≡
4

∑
i=1

Ci O(i)

O(1) ≡ 1

4
∂µhρσ ∂

µhρσ

O(2) ≡−1

2
∂

ρhρσ ∂µh
µσ

O(3) ≡ 1

2
∂µh∂λh

µλ

O(4) ≡−1

4
∂µh∂

µh
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LTDiff forces C2 = 1

δhµν = ∂µ ξν + ∂ν ξµ with ∂µ ξ
µ = 0

Only two theories propagate just spin two

Fierz-Pauli (LDiff).
C3 = C4 = 1

WTDiff.

C3 =
2

n

C4 =
n+ 2

n

WTDiff is obtained by hµν → hµν− 1
nhηµν . But this is not a field redefinition,

because it is not invertible. It is the linear limit of Unimodular Gravity.
It has been shown recently that this generalizes also to a curved space
C. Barceló, R. Carballo-Rubio and L. J. Garay, Phys. Rev. D 89, no. 12,
124019 (2014).

Quantum Corrections to Unimodular Gravity May 28, 2015 5 / 19



We follow this idea of a non-invertible field redefinition to define Unimodular
Gravity from General Relativity. The truncation of General Relativity to
unimodular metrics is just

SUG ≡−Mn−2
P

∫
dnx (R[ĝ ] +Lmatt[ψi , ĝ ]) =

=−Mn−2
P

∫
dnx |g |

1
n

(
R +

(n−1)(n−2)

4n2

∇µg∇µg

g2
+Lmatt[ψi , |g |−

1
n gµν ]

)
And the equations of motion

Rµν −
1

n
Rgµν −

(n−2)(2n−1)

4n2

(
∇µg∇νg

g2
− 1

n

(∇g)2

g2
gµν

)
+

+
n−2

2n

(
∇µ ∇νg

g
− 1

n

∇2g

g
gµν

)
= M2−n

P

(
Tµν −

1

n
Tgµν

)
which reminds to the ones posited by Einstein in 1919 when |g |= 1.
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Working in the gauge |g |= 1, the trace can be recovered by using the Bianchi
identities

∇µR
µν =

1

2
∇

νR ⇒ n−2

2n
∇µR =−1

n
∇µT

n−2

2n
R +

1

n
T =−C

Rµν −
1

2
Rgµν −Cgµν = Tµν

The constant piece of the potential V0 does not source the cosmological constant.

The aim of the work we have done is to examine whether there are quantum
corrections to this situation since, if there were present (which are not) the
importance of the classical result would not be great.
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Quantum Corrections

We can focus now in what happens with quantum corrections.

We use a background field expansion

gµν = ḡµν +hµν |ḡ |= 1

The gauge symmetry is WTDiff. We make use of BRST quantization, which is
not trivial as we need to fix independently both symmetries.
Transverse ghosts are needed for TDiff, ∇µcT

µ = 0 so we swap transversality with
gauge symmetry cµ → ∇µ f .

New ghosts are needed in order to close the BRST, we need ”ghosts for ghost”.
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field sD sW

gµν 0 0

hµν ∇µc
T
ν + ∇νc

T
µ + cρT ∇ρhµν + ∇µc

ρThρν + ∇νc
ρThρµ 2c(1,1)

(
gµν +hµν

)
c(1,1)µ

(
Q−1

)µ

ν

(
cρT ∇ρc

T ν
)

+ ∇µ φ (0,2) 0

φ (0,2) 0 0

b
(1,−1)
µ f

(0,0)
µ 0

f
(0,0)

µ 0 0

c̄(0,−2) π(1,−1) 0

π(1,−1) 0 0

c ′ (0,0) π ′ (1,1) 0

π ′ (1,1) 0 0

c(1,1) cT ρ ∇ρc
(1,1) 0

b(1,−1) cT ρ ∇ρb
(1,−1) f (0,0)

f (0,0) cT ρ ∇ρ f
(0,0) 0

Table: BRST transformations of the fields involved in the path integral.

where
(
Q−1

)µ

ν
denotes the inverse of the operator Qµν = gµν�−Rµν
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The operator involving hµν , f and c ′ is non-minimal. We need to use the
Barvinsky & Vilkovisky technique (A. O. Barvinsky and G. A. Vilkovisky, Phys.
Rept. 119, 1 (1985)) to compute it.

The non minimal piece can be written

S =
∫

dnx ΨAFAB ΨB

ΨA =

hµν

f
c ′
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The main idea is to introduce a parameter λ in the non-minimal part of the
operator

FAB (∇|λ ) = γAB�+ λJ
αβ

AB ∇α ∇β +MAB = DAB (∇|λ ) +MAB 0≤ λ ≤ 1

so the effective action can be defined as

W (λ ) = W (0)− 1

2

∫
λ

0
dλ
′Tr

[
dF̂ (λ )

dλ ′
Ĝ (λ

′)

]

And if we find the inverse of F̂ in the sense

F̂ (∇)K̂ (∇) = �m + M̂(∇)

we can expand the Green function as a power series in M̂

Ĝ =−K̂
4

∑
p=0

(−1)p M̂p
I

�m(p+1)
+ ...

so the trace can be easily computed.
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By doing this we find(the divergent part of) the off-shell effective action

W∞ =
1

16π2

1

n−4

∫
dnx

(
119

90
RµναβR

µναβ +

(
1

6α2
− 359

90

)
RµνR

µν +
1

72

(
22− 3

α2

)
R2

)
Now we can get the on-shell result using the equations of motion of the

background field

Rµν −
1

4
Rgµν = 0

RµνR
µν = R2

R = constant

and

W4 = E4 + 2RµνR
µν − 2

3
R2 = E4 + constant
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The one loop (on-shell) quantum effective action is then

W on-shell
∞ =

1

16π2

1

n−4

∫
dnx

(
119

90
RµνρσR

µνρσ − 83

120
R2

)
=

=
1

16π2

1

n−4

∫
dnx

(
119

90
E4−

83

120
R2

)
This is not dynamical, in contrast to the GR one (Christensen-Duff)

W GR
∞ ≡ 1

16π2(n−4)

∫ √
|g |d4x

(
53

45
W4−

1142

135
Λ2

)
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This result is not a consequence of |ḡ |= 1.

Indeed, as there is no conformal anomaly one can recover from this the result for
an arbitrary background metric.

Rather, it is a consequence of Weyl symmetry, that forbids zero dimension
operators.

O(0) =
∫

dnx (−g)β

However in GR (which can always be worked out in the gauge |g |= 1), the
cosmological constant is still there as there is no symmetry in GR to prevent zero
dimension terms from appearing.

Thank you
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Some details on calculations: BRST

s = sD + sW | s2
D = s2

W = 0 & {sD ,sW }= 0

sDgµν = sW gµν = 0

sDhµν = ∇µc
T
ν + ∇νc

T
µ + cT ρ

∇ρhµν + ∇µc
T ρhρν + ∇νc

T ρhρµ

sW hµν = 2c
(
gµν +hµν

)
The quadratic piece of the unimodular lagrangian

L =
1

4
hµν�hµν −

1

4n
h�h+

1

2
hαβh

µ

β
Rµα +

1

2
hµνhαβRµανβ −

1

n
hhµνRµν−

− 1

2n
hµνhµνR +

(
−f�f +

α

2
f�h+

α

2
h�f

)
− 1

2

(
∇µc

′ (0,0)
∇

µc ′ (0,0) +

+2

(
∇νh

ν
µ −

1

n
∇µh

)
∇

µc ′ (0,0)

)
+

1

2n2
h2R
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TDiff ghosts are transverse ∇µcT
µ . We need several fields to fix the BRST

h
(0,0)
µν , c

(1,1)
µ , b

(1,−1)
µ , f

(0,0)
µ , φ

(0,2),

π
(1,−1), π

′(1,1), c̄(0,−2), c ′(0,0),

c(1,1), b(1,−1), f (0,0)

TDiff and Weyl are fixed independently (technically convenient)

Sgauge−fixing =
∫

dnx s (XTD +XW )
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STDiff
BRST =

∫
dnx bµ

(
�2c

(1,1)
µ −2Rµρ ∇

ρ
∇νc

ν(1,1)−�Rµρc
ρ(1,1)−

−2∇σRµρ ∇
σcρ(1,1)−RµρR

ρνc
(1,1)
ν

)
+ c̄(0,−2)�φ

(0,2)+

+ π
(1,−1)�−1

π
′ (1,1)− 1

4ρ1

(
FµF

µ + ∇µc
′ (0,0)

∇
µc ′ (0,0) + 2Fµ ∇

µc ′ (0,0)
)

=

= Sbc +Sbc
gf +Sc̄φ +Sπ +Shc ′

SWeyl
BRST =

∫
dnx

[
∇µ f

(0,0)
∇

µ

(
f (0,0)−α g(h)

)
−α∇µb

(1,−1)
∇

µ (sg(h))
]
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Functional traces

The functional traces

Tr

(
Oν1ν2...νj

∇µ1∇µ2 ...∇µp

I
�n

)
can be computed by using the heat kernel expansion

exp(−sF̂ (∇))δ (x ,x ′) =
1

(4π)n/2

D1/2(x ,x ′)

sn/2
exp

(
−σ(x ,x ′)

2s

)
Ω̂(s|x ,x ′)

and with

Ω̂(s|x ,x ′) =
∞

∑
n=0

snân(x ,x ′)

I
�n

=
1

(n−1)!

∫
∞

0
ds sn−1 exp(−s�̂)
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Now the traces can be computed by acting with derivatives on this representation
and using the coincidence limits.

Finally it is needed to integrate over s, where only three types of (logarithmic)
divergent integrals arise for dimension n→ 4∫

∞

0

ds

sn/2+k
, with k =−1,0,1

and whose pole part can be obtained by integrating by parts, which gives the
Laurent series of the result.
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