Bennett Magy

T → Wb Update: 26 March 2015

Top Partner Search T→Wb @13 TeV

- Background Samples:
 - *tt*
 - W + jets
 - Z + jets
 - Singletop
- Signal Samples:
 - 700 GeV
 - 900 GeV
 - 1100 GeV

Neutrino Reconstruction

Neutrinos can't be detected by the ATLAS detector, but we can still piece them back together

Reconstruction Equations

$$p_{x} = p_{T} \cos \phi$$

$$p_{y} = p_{T} \sin \phi$$

$$\mu = \frac{M_{W}^{2}}{2} + p_{x,v} p_{x,l} + p_{y,v} p_{y,l}$$

$$a = \frac{\mu p_{z,l}}{E_{l}^{2} - p_{z,l}^{2}}$$

$$b = \frac{E_{l}^{2} E_{T,miss}^{2} - \mu^{2}}{E_{l}^{2} - p_{z,l}^{2}}$$

$$p_{z,v} = a \pm \sqrt{a^{2} - b}$$

- With MET, MET Phi, lepton information and what we know about the W boson, reconstruct the undetected Neutrino.
- Currently analyzing six different methods to handle the case where the neutrino solution(s) is/are complex.
- Compare how their reconstructions compare with truth

Reconstruction Methods

- "Real Only": $p_{z,\nu} = \operatorname{Re}(a \pm \sqrt{a^2 b})$
- "Colinear": $\eta_{\nu} = \eta_l \mid \phi_{\nu} = \phi_l$
- "modColinear": $\eta_{\nu} = \eta_l \mid \phi_{\nu} = \phi_{miss}$
- "TMinuit": Scale back E_{T,miss} with TMinuit. The goal is to minimize difference between reconstructed M_W and standard M_W.
- "Rotation": Rotate ϕ_{miss} until the solution is real.
- "scaleMET": Scale back E_{T,miss} until the solution is real.

Reconstruction Plots

$t\overline{t}$ vs. $T\overline{T}$ (M = 900 GeV)

Neutrino Energy Comparison

 $T\overline{T} (M_T = 900 \text{ GeV})$

Neutrino Energy Resolution

 $t\bar{t}$

Reco	Mean	Std Dev
scaleMET	24.4	189.43
realonly	71.9	848.16
rotation	79.24	866.03
colinear	86.56	882.51
modColinear	86.56	882.51
TMinuit	-8.34	187.65

$T\overline{T} (M_T = 900 \text{ GeV})$

Reco	Mean	Std Dev
scaleMET	-33.18	270.11
realonly	67.3	484.17
rotation	72.35	474.29
colinear	96.65	600.39
modColinear	96.65	600.39
TMinuit	109.5	962.36

Leptonic W Mass Comparison

Leptonic W Mass Resolution

 $t\overline{t}$

1.12

TMinuit

28.8

 $T\overline{T} (M_T = 900 \text{ GeV})$

TMinuit

-15.38

111.45

Further Investigation

- TMinuit and scaleMET seem to be best options.
- Look at different samples (W + jets, Z + jets) for reconstruction behavior
- Investigate viability of truth information.

Cut Optimization

Motivation

- How do we choose our events?
- Goal is to identify "Signal Region":
 - Signal: TT

 ēvents
 - Background: non- $T\overline{T}$ events that pass selection.
- Maximize Significance
- Minimize Statistical Uncertainty

$$\Sigma^{2} = \frac{{Y_{S}}^{2}}{Y_{S} + Y_{B}}$$
(Significance Eqn)

Interpreting Significance Plots

Interpreting Significance Plots (cont.)

Note: This is a left hand cut, so the significance is a function of cutting all the events to the right of the specified value

Signal Sample Dependence

Signal Sample Dependence Cont.

Further Investigation

- All that has been explored so far are 1-D optimization (one cut considered at a time)
- Explore TMVA for multidimensional optimization

Cultural Activities

Special Thanks

 Thanks to Prof. Tom Schwarz, Dr. Allison McCarn, Daniel Marley, Prof. Jean Krisch, Dr. Steven Goldfarb, and Prof. Homer Neal!

THE END