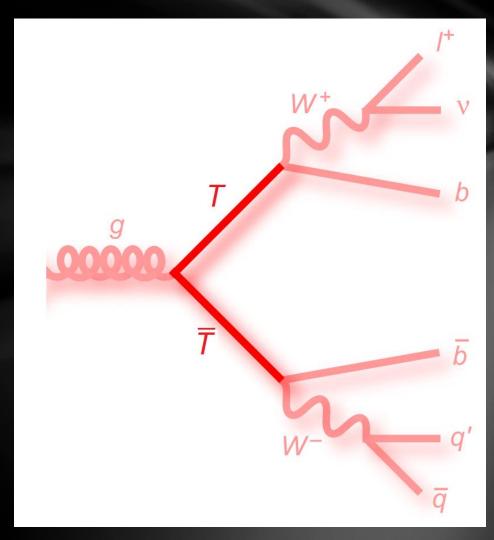
# **Top Partner Search**

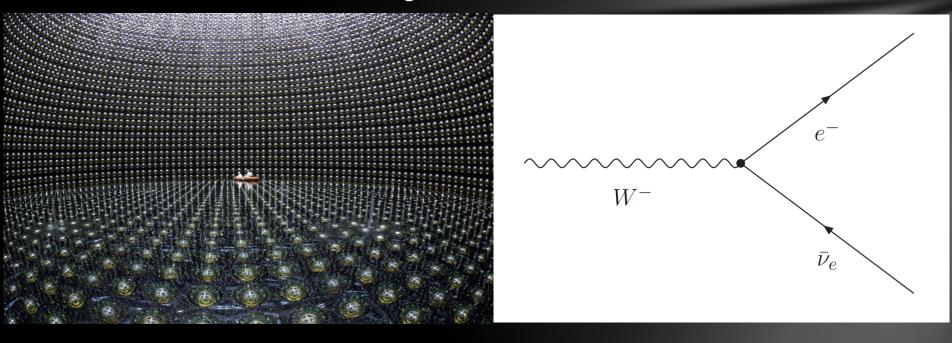
Bennett Magy




# T→Wb @13TeV

Background Samples:

- tt
- W + jets
- Z + jets
- Singletop


Signal Samples:

- 700 GeV
- 900 GeV
- 1100 GeV



# **Neutrino Reconstruction**

Neutrinos can't be detected by the ATLAS detector, but we can still piece them back together



#### **Reconstruction Equations**

$$p_{x} = p_{T} \cos \phi$$

$$p_{y} = p_{T} \sin \phi$$

$$\mu = \frac{M_{W}^{2}}{2} + p_{x,v}p_{x,l} + p_{y,v}p_{y}$$

$$a = \frac{\mu p_{z,l}}{E_{l}^{2} - p_{z,l}^{2}}$$

$$b = \frac{E_{l}^{2}E_{T,miss}^{2} - \mu^{2}}{E_{l}^{2} - p_{z,l}^{2}}$$

$$p_{z,v} = a \pm \sqrt{a^{2} - b}$$

With MET, MET Phi, lepton information and what we know about the W boson, reconstruct the undetected Neutrino.

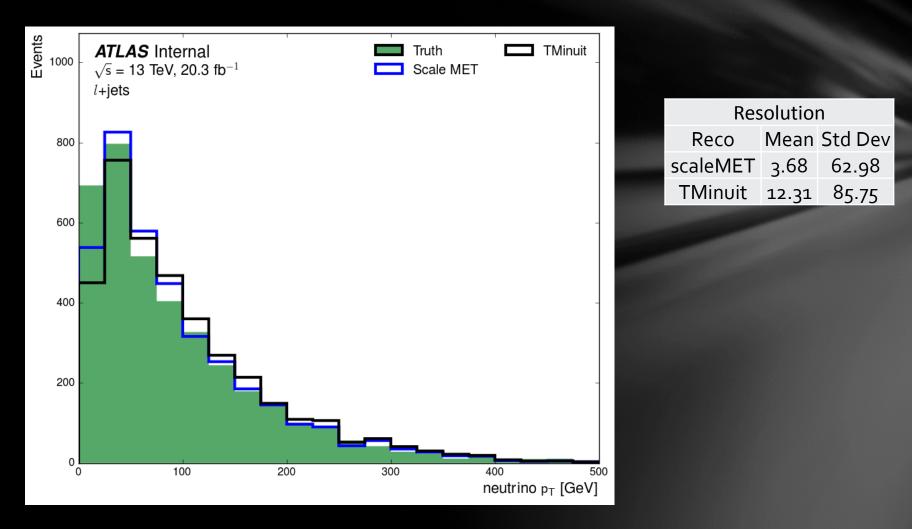
Currently analyzing six different methods to handle the case where the neutrino solution(s) is/are complex.

Compare how their reconstructions compare with truth

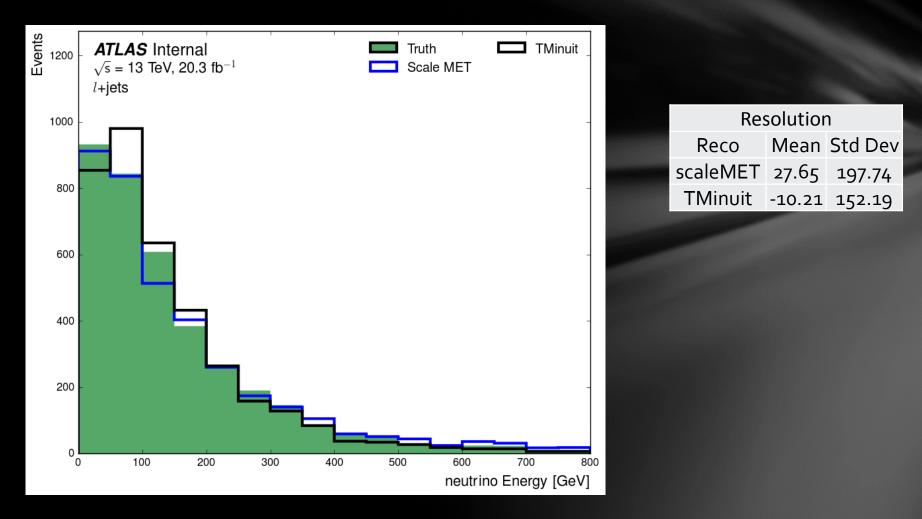
#### **Reconstruction Methods**

"Real Only":  $p_{z,v} = \operatorname{Re}(a \pm \sqrt{a^2 - b})$ 

"Colinear":  $\eta_{\nu} = \eta_l \mid \phi_{\nu} = \phi_l$ 


"modColinear":  $\eta_{\nu} = \eta_l \mid \phi_{\nu} = \phi_{miss}$ 

"TMinuit": Scale back  $E_{T,miss}$  with TMinuit. The goal is to minimize difference between reconstructed  $M_W$  and standard  $M_W$ .


"Rotation": Rotate  $\phi_{miss}$  until the solution is real.

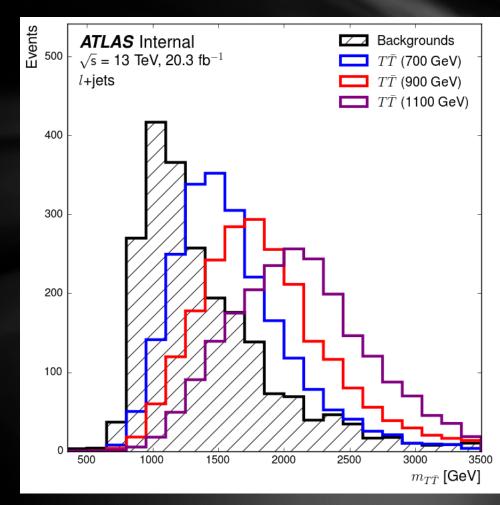
"scaleMET": Scale back  $E_{T,miss}$  until the solution is real.

#### Neutrino Pt Distribution



## Neutrino Energy Distribution




# Conclusions

- TMinuit and scaleMET are the best reconstruction methods
- Neither clearly superior with respect to distance from truth
- Choose TMinuit since it is a faster method

# **Cut Optimization**

- How do we choose our events?
- Goal is to create "Signal Region":
- Signal:  $T\overline{T}$  events
- Background: non-  $T\overline{T}$  events that pass selection.
- Make sure background doesn't drown out signal
- Maximize Significance
- Minimize Statistical Uncertainty

$$\Sigma^{2} = \frac{Y_{S}^{2}}{Y_{S} + Y_{B}}$$
(Significance Eqn)



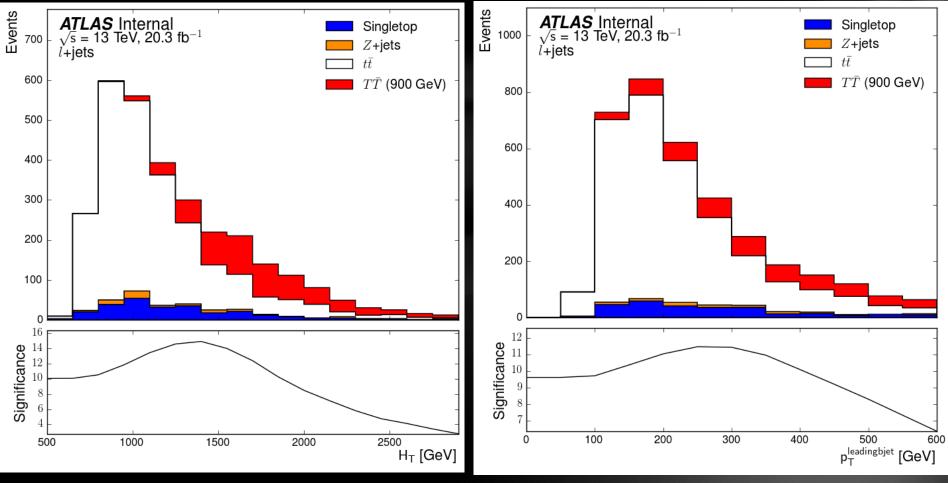
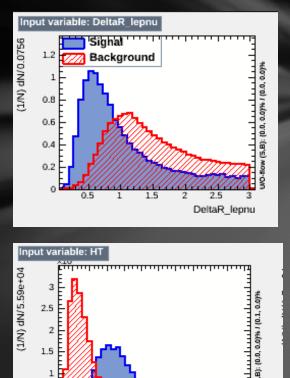

## 8 TeV Cuts

Table 3: Summary of event selection requirements for this analysis.

| Selection       | Requirements                                                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| Preselection    | One electron or muon                                                                                                         |
|                 | $E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T} > 60 \text{ GeV}$                                   |
|                 | $\geq$ 4 jets, $\geq$ 1 <i>b</i> -tagged jets                                                                                |
| loose selection | Preselection                                                                                                                 |
|                 | $\geq 1 W_{had}$ candidates                                                                                                  |
|                 | $H_{\rm T} > 800 { m ~GeV}$                                                                                                  |
|                 | $p_{\rm T}(b_1) > 160 \text{ GeV}, p_{\rm T}(b_2) > 110 \text{ GeV}$ (type I) or $p_{\rm T}(b_2) > 80 \text{ GeV}$ (type II) |
|                 | $\Delta R(\ell, \nu) < 0.8$ (type I) or $\Delta R(\ell, \nu) < 1.2$ (type II)                                                |
| tight selection | loose selection                                                                                                              |
|                 | $\min(\Delta R(\ell, b_{1,2})) > 1.4, \min(\Delta R(W_{had}, b_{1,2})) > 1.4$                                                |
|                 | $\Delta R(b_1, b_2) > 1.0$ (type I) or $\Delta R(b_1, b_2) > 0.8$ (type II)                                                  |
|                 | $ m_{ m reco}^{ m lep} - m_{ m reco}^{ m had}  < 250 { m GeV} { m (type I)}$                                                 |

### Linear Method


- "N-1" approach, perform all cuts except for the one being plotted
- Analyze significance curve

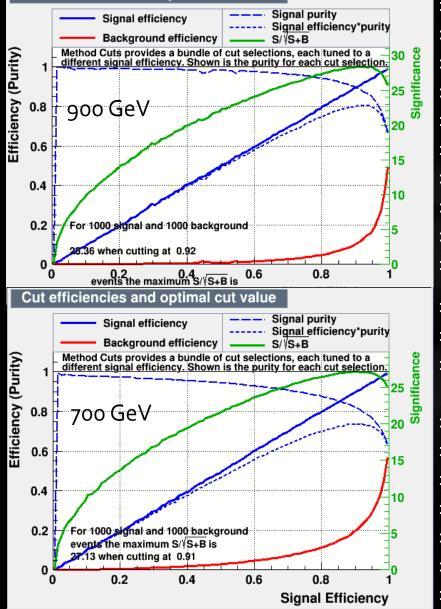


#### TMVA Method

- Optimize several different cuts at once.
- Iterates through different levels of signal efficiency and measures significance.

--- CutsGA : Cut values for requested signal efficiency: 0.91 CutsGA : Corresponding background efficiency : 0.219705 CutsGA : Transformation applied to input variables : None - CutsGA CutsGA : Cut[ 0]: 0.0557273 < DeltaR lepnu <= --- CutsGA 3.06343 --- CutsGA : Cut[ 1]: 626159 < HT <= 1.63625e+07 : Cut[ 2]: 34421 < bjet pt[0] <= 1.44751e+06 --- CutsGA 18377.4 < bjet pt[1] <= 1.00036e+06 CutsGA : Cut[ 3]: --- CutsGA CutsGA : Cut values for requested signal efficiency: 0.92 CutsGA : Corresponding background efficiency : 0.234776 --- CutsGA : Transformation applied to input variables : None --- CutsGA CutsGA CutsGA : Cut[ 0]: 0.103538 < DeltaR lepnu <= 3.1077 : Cut[ 1]: 615972 < HT <= 1.60016e+07 CutsGA 25967.4 < bjet pt[0] <= 1.30178e+06 --- CutsGA : Cut[ 2]: 18653.9 < bjet pt[1] <= CutsGA : Cut[ 3]: 939408 CutsGA CutsGA Cut values for requested signal efficiency: 0.93 CutsGA : Corresponding background efficiency --- CutsGA : 0.254482 Transformation applied to input variables : None --- CutsGA --- CutsGA --- CutsGA : Cut[ 0]: 0.0561724 < DeltaR lepnu <= 3.03473 : Cut[ 1]: 603608 < HT <= 2.31869e+07 --- CutsGA --- CutsGA : Cut[ 2]: 30394.5 < bjet pt[0] <= 1.29352e+06 18828 < bjet pt[1] <= 1.0212e+06 --- CutsGA : Cut[ 3]: --- CutsGA




400 600 8001000 200 400 600 800 000 200 400

0.5

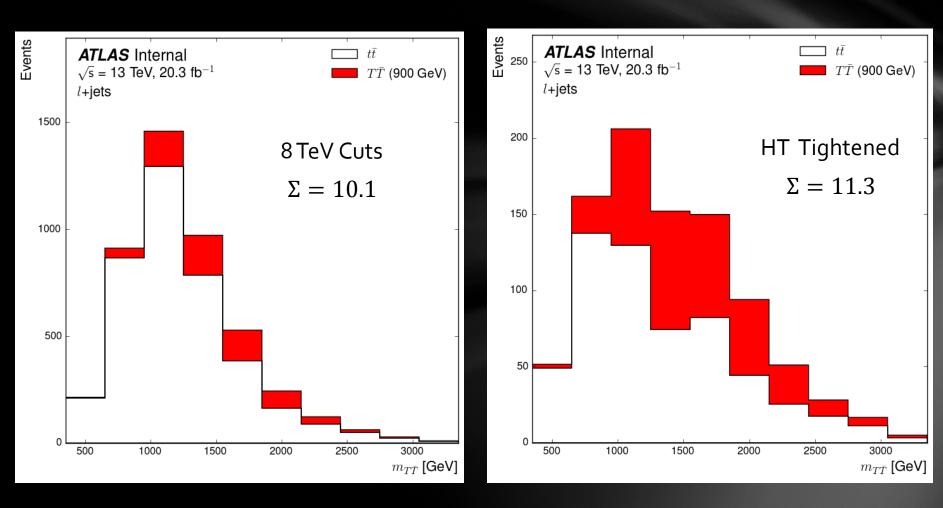
HT

# Significance Plots

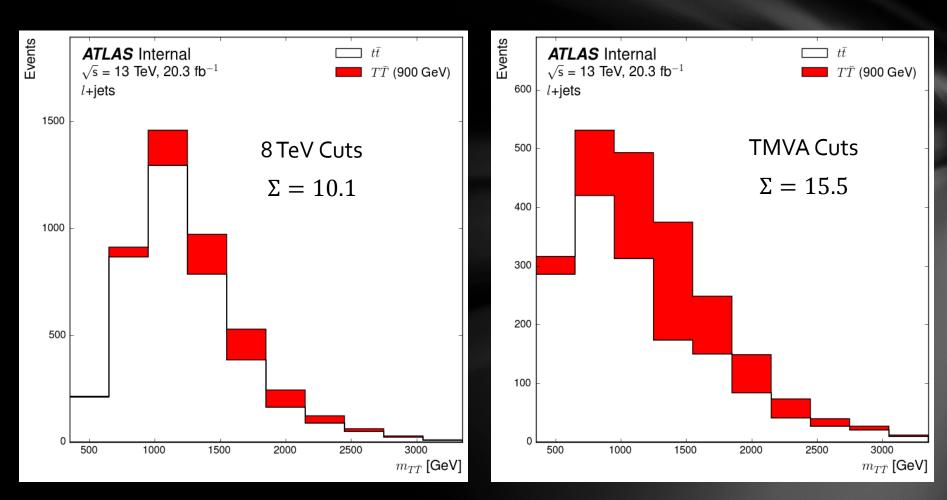
Cut efficiencies and optimal cut value



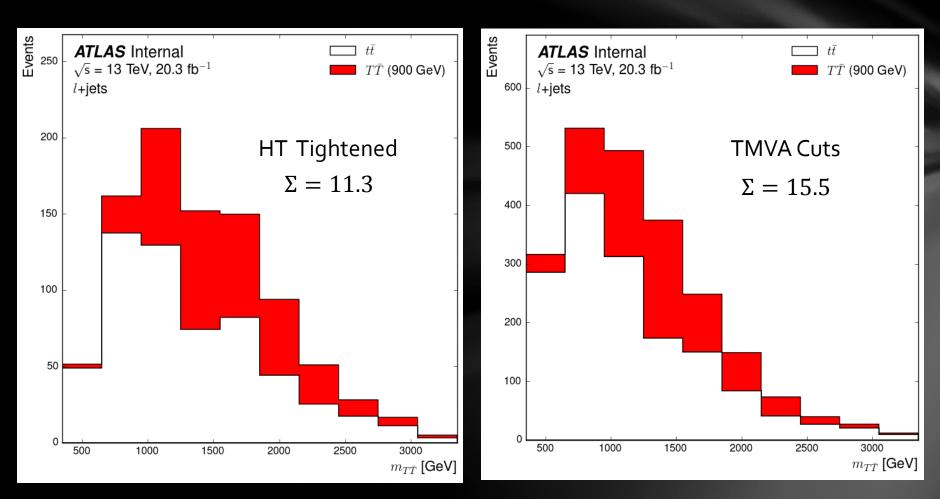
: Cut values for requested signal efficiency: 0.92 : Corresponding background efficiency : 0.132506 : Transformation applied to input variables : None


: Cut[o]: 0.0478034 < DeltaR\_lepnu <= 3.03565 : Cut[1]: 698542 < HT <= 1.61862e+10 : Cut[2]: 55725.3 < bjet\_pt[0] <= 1.64192e+06 : Cut[3]: 13795.2 < bjet\_pt[1] <= 1.22079e+06

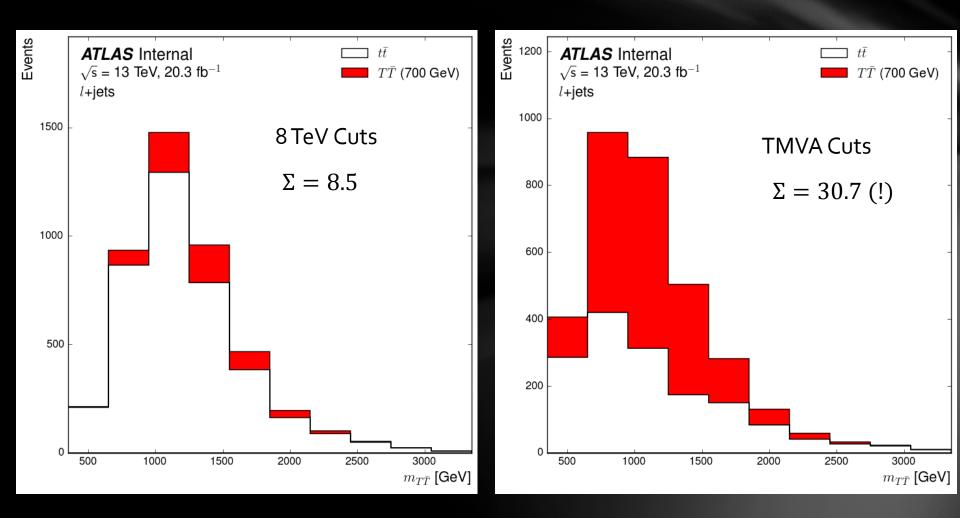
: Cut values for requested signal efficiency: 0.91 : Corresponding background efficiency :


: Transformation applied to input variables : None

: Cut[ o]: 0.0557273 < DeltaR\_lepnu <= 3.06343 : Cut[ 1]: 626159 < HT <= 1.63625e+07 : Cut[ 2]: 34421 < bjet\_pt[o] <= 1.44751e+06 : Cut[ 3]: 18377.4 < bjet\_pt[1] <= 1.00036e+06


# Cut Results: $H_T \rightarrow 1400 \text{ GeV}$




#### Cut Results: TMVA Selection



## **Cuts Comparison**



#### TMVA Selection on 700 GeV



# PyDataMC

ROOT ntuple  $\rightarrow$  json  $\rightarrow$  Matplotlib Plots

Now available at:

/afs/cern.ch/work/b/bmagy/public/PyDataMC

| AdData.py info.py ison2hist.py root2json.py run_json2hist.py                                                                                                                                                                                                 | 500 -<br>400 -           | <b>ATLAS</b> Internal<br>$\sqrt{s} = 8$ TeV, 20.3 fb <sup>-1</sup><br>$\mu$ +jets<br>ItagIn | Diboson<br>Singletop<br>tīV<br>Z+jets<br>W+light | , W+bb̄/cc̄<br>, W+c -<br>, t̄t<br>, Data -                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1 ///<br>2 Created: 1 February 2015<br>3 Last Updated: 8 April 2015<br>4<br>5 Bennett Magy                                                                                                                                                                   | 300 -                    | ╴<br>╶┷┌┿┘┿╵╴                                                                               |                                                  | -                                                                                                |
| 6 bmagy@umich.edu<br>7 University of Michigan, Ann Arbor, MI 48109<br>8<br>9<br>10                                                                                                                                                                           |                          |                                                                                             |                                                  |                                                                                                  |
| <pre>11 Contains the DataMCPlotter function 12 13 To run (recommended): 14 import json2hist.py # Do not execute this file! 15 16 '''</pre>                                                                                                                   |                          | ╴╶╷┘╵<br>╶╸┘╺╴<br>───────────────────────────────                                           |                                                  | - (*)<br>• (*)                                                                                   |
| <pre>17 18 import os 19 import sys 20 import matplotlib 21 matplotlib.use('Agg') # Force matplotlib to not use any Xwindows backend. 22 from matplotlib import rc 23 from matplotlib import pyplot as plt</pre>                                              | 1.4<br>1.2<br>1.0<br>0.8 | ╴<br>╴<br><i>╡<u>┝┤</u>┟╎┤┤<u>┤┝</u>┷<u>┲</u>┿<u>╾</u>╈╍╤┿╤<u></u>╤╤<mark>╷</mark>╶┑</i>    |                                                  | ╴<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸<br>╸ |
| <pre>24 from matplotlib import gridspec<br/>25 os.environ['PATH'] = os.environ['PATH']+':/usr/texbin'<br/>26 rc('text', usetex=True)<br/>27 rc('font', family='sans-serif')<br/>28 fontProperties = {'family':'sans-serif','sans-serif':['Helvetica']}</pre> | 0.6<br>–2                | 0      1.5      1.0       0.5     0                                                         | 0.0 0.5 1.0                                      | 0 1.5 2.0<br>Large-R Jet η                                                                       |

#### **Cultural Activities**







#### **Special Thanks**

Thanks to Prof. Tom Schwarz, Dr. Allison McCarn, Daniel Marley, Prof. Jean Krisch, Dr. Steven Goldfarb, Prof. Homer Neal, and the Lounsbery Foundation!