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Brief introduction

m The discovery of a scalar particle of mass my ~ 126 GeV in
2012, consistent with the SM Higgs boson

m One-loop Higgs mass is given by

3 mb[ ME . X? X?
2 o t t
Mhy = €05 20+ 4 2 [' et M2 (1_ 12/\//3)]

ew

(126GeV)? = (91GeV)? + (81GeV)?

m MSSM implies either heavy stops or large X; = A; — pcot 8
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5D MSSM models

m We define the 5D MSSM to be a field theory on 4D
space-time, times an interval of length R in which the gauge
fields and the Higgses (H,, Hy) propagate into the fifth
dimension and SM matter fields restricted to the y = 0 brane

m The compactifications produce a towers of new particle states
for MSSM particle in 4D theory at @ > 1/R

m No contribution from Kaluza-Klein excited states of the
fermions on the brane

m We make use of RGEs
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RGEs for 5D MSSM

The one loop beta function for the gauge couplings and gaugino
soft masses if t > log (1/R) /log (10) are given by

dgi i i
167[.2% = b4Dgi3 + b5Dgl3(S(t) - 1) ’
2dM,' i 2 i 2
L6’ " = 2bpMigl +2bip Migh(S(t) — 1),

where
S(t) = (mZR)et(log(IO)—log(mz)),
bi, = (33/5,1,-3),
bip = (6/5,—2,—6).
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Yukawa couplings

The five dimensional contribution are given by

i 34 9 32
By, = Y, (6YJYU+2YJYd)—<3O g2+ g22+ 3g3)}
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Trilinear soft breaking parameters

In the 5D MSSM these are given by:

Ba,

Bay

BAe

-i- 34 2 9 2 32
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34 64
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t t 19 64
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Regarding the breaking of SUSY. We do, however, make some
minimal specifications:

m We take as inputs the Yukawa and gauge couplings at the
SUSY scale, 1 TeV.

m We will assume SUSY breaking occurs at the unification scale,
which is found by finding the scale at which g1 = g».

m We specify the value of the gluino mass, M3 at 1 TeV.

m We take the trilinear soft breaking terms, A, g/, to vanish at
the unification scale.
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Results and Discussions

Compactification scale 10 TeV Compactification scale 10° TeV
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Inverse Fine Structure Constants a; '(E)

log (E/GeV) log (E/GeV)

The key feature is that with a larger compactification radius the
unification scale can be significantly lowered, lowering the desert of
scales between the EW scale and unification.
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C scale 10 TeV.
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We also specify the Yukawa coupling RGEs boundary conditions at

1 TeV, which interestingly appears to vanish when evolved to the
unification scale
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C scale 10 TeV. scale 10° TeV.
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We see that by increasing the compactificaton radius one can
increase the size of the trilinear soft breaking term.
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C scale 10 TeV.

C scale 10 TeV.
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Here we show that after a reasonable period of RG evolution the
A: mimics the magnitude of the gluino mass, at 1/R ~ 10 TeV,

such that at low scales |A¢| ~ Ms.
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A plot of the one loop Higgs mass versus the lightest stop mass for
representative values of X; = A; — pcot .
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4= 200 GeV and X;= ~500 GeV J1=200 GeV and X= 1.5 TeV
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A plot of the one loop Higgs mass versus tan 8 for different values
of the stop mass, for X; = A; — pcot 3 of —500 GeV (left panel)
and —1.5 TeV (right panel).
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Conclusions

m We have explored how 5D extension of the MSSM may
generate large A; to achieve the observed Higgs mass and
have sub-TeV stops, perhaps observable at the LHC.

m We computed the full one-loop RGEs for all supersymmetric
and soft breaking parameters.

m We find that Yukawa couplings may be made to unify and
approximately vanish at the unification scale.

m We find that the magnitude of A; follows closely that of the
magnitude of M3 and increases as the compactification scale
decreases.
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