Performance of Missing Transverse Momentum Reconstruction in ATLAS studied in Proton-Proton Collisions recorded in 2012 at 8 TeV

L. March (University of the Witwatersrand) on behalf of the ATLAS Collaboration

High Energy Particle Physics Workshop Feb 12th 2015 - Johannesburg

Introduction

In a hadron collider event the missing transverse momentum (E_T^{miss}) is defined as the momentum imbalance in the plane transverse to the beam axis, where momentum conservation is useful. Such an imbalance may signal the presence of undetected particles, such as neutrinos or new weakly-interacting particles

- An optimized reconstruction and calibration of E_r^{miss} was developed by the ATLAS Collaboration:
 - This measurement is significantly affected by the contribution of additional pp collisions (pile-up)
 - Methods were developed to suppress such contributions
 - The performance of the reconstructed E_{τ}^{miss} after pile-up suppression is shown here
- The event samples used to assess the quality of the E_τ^{miss} reconstruction are:
 - W and Z bosons (leptonic decays)
 - Simulated events with large jet multiplicity: $H \rightarrow \tau \tau$, t t-bar and supersymmetric (SUSY) events
 - The $E_{\!\tau}^{{}_{\!\!\!\!M^{iss}}}$ performance is studied in both data and Monte Carlo (MC) simulation
 - In simulated events, the E_{τ}^{miss} is calculated from all non-interacting particles: True E_{τ}^{miss} ($E_{\tau}^{miss,True}$)

Data, event selection and MC samples

• Data samples:

During 2012, proton-proton (pp) collisions at a centre-of-mass energy of 8 TeV were recorded: L ~20 fb⁻¹ Only data with fully functioning calorimeter, Inner Detector (ID) and muon spectrometer are analyzed

• Event selection:

- Z \rightarrow II event selection: 2 leptons with opposite charge and m_{in} consistent with Z mass (66<m_{in}<116 GeV)
 - $Z \rightarrow \mu \mu$: 2 muons reconstructed in the muon spectrometer with a matched track in ID
 - $p_{\tau} > 25$ GeV, $|\eta| < 2.5$, z displacement of muon track from primary vertex < 10 mm and isolation
 - $Z \rightarrow ee$: 2 e with $|\eta|$ <2.47 (except 1.37< $|\eta|$ <1.52), *medium* identification criteria and p₂>25 GeV
- W \rightarrow I v event selection: 1 lepton (e or μ), isolation, E_{τ}^{miss} > 25 GeV and m_{τ} > 50 GeV
 - Reconstructed mass of transverse momentum of the lepton: $m_{_{\rm T}}$

• <u>MC simulation samples:</u>

- Z \rightarrow II and W \rightarrow I v are generated with NLO POWHEG model, parton shower by PYTHIA8 and CT10 PDF
- t t-bar events with MC@NLO, Z \rightarrow TT and H \rightarrow TT (mH = 125 GeV) with POWHEG, SUSY with HERWIG++
- Additional inelastic pp collisions (pile-up interactions) are generated using PYTHIA8 + MSTW08 PDF
- The same event selection criteria for Z \rightarrow II and W \rightarrow I v data are also applied to MC events
 - t t-bar events: 1 e or µ with p₁>25 GeV
 - $Z \rightarrow \tau \tau$ and $H \rightarrow \tau \tau$ (lepton-hadron): 1 e or μ + 1 τ -jet both with p_{τ} >20 GeV

E^{_miss} reconstruction

 The E_T^{miss} reconstruction uses energy deposits in the calorimeters and muon spectrometer

The E₁^{miss} calculation uses reconstructed and calibrated physics objects

- Calorimeter energy deposits are associated with a reconstructed and identified high-p_ parent object
- The E_T^{miss} is calculated as follows: $E_T^{miss} = sqrt((E_x^{miss})^2 + (E_y^{miss})^2)$

 $\mathsf{E}_{\mathsf{x}(y)}^{\mathsf{miss}} = \mathsf{E}_{\mathsf{x}(y)}^{\mathsf{miss},\mathsf{e}} + \mathsf{E}_{\mathsf{x}(y)}^{\mathsf{miss},\mathsf{y}} + \mathsf{E}_{\mathsf{x}(y)}^{\mathsf{miss},\mathsf{t}} + \mathsf{E}_{\mathsf{x}(y)}^{\mathsf{miss},\mathsf{jets}} + \mathsf{E}_{\mathsf{x}(y)}^{\mathsf{miss},\mathsf{SoftTerm}} + \mathsf{E}_{\mathsf{x}(y)}^{\mathsf{miss},\mathsf{p}}$

where $E_x^{\text{miss,e}} = -\sum p_{\tau}^{\text{e}} \cos \phi^{\text{e}}$, ...

- Only jets with calibrated p₁>20 GeV are used to calculate the jet term
- The soft term is calculated from calorimeter cells and tracks not associated to high- p_{τ} objects
- The total transverse energy in the calorimeters
 - It is defined as the scalar sum: $\sum E_{\tau} = \sum E_{\tau}^{e} + \sum E_{\tau}^{\tau} + \sum E_{\tau}^{t} + \sum E_{\tau}^{softTerm}$

(scalar sum of the transverse energy of reconstructed and calibrated objects and of the soft term)

• The total transverse energy in the event: $\sum E_{\tau}$ (event) = $\sum E_{\tau} + \sum p_{\tau}^{\mu}$

Methods for pile-up suppression in E^{miss}

- A clear deterioration of the E_T^{miss} performance is observed when the average number of pile-up interactions per event increases
 - All E_{τ}^{miss} terms are affected, but the terms which are most affected are the jets and soft terms
- Pile-up suppression in the E_{τ}^{miss} jet term based on tracks
 - A cut is applied based on the Jet Vertex Fraction (JVF): JVF = $\sum_{\text{tracks_jet,PV}} p_T / \sum_{\text{tracks_jet}} p_T$
 - Any jet with $p_{\tau} < 50$ GeV, $|\eta| < 2.4$ and which does not satisfy |JVF| > 0 is discarded for $E_{\tau}^{miss,jets}$ term
- Pile-up suppression in the $E_{\tau}^{\rm miss}$ soft term based on tracks
 - It is calculated as: Soft Term Vertex Fraction (STVF) = $\sum_{\text{tracks}_SoftTerm,PV} p_T / \sum_{\text{tracks}_SoftTerm} p_T$
 - The $E_{\tau}^{\rm miss,SoftTerm}$ is multiplied by the STVF factor (this $E_{\tau}^{\rm miss}$ is called STVF)
- Pile-up suppression in the E_T^{miss} soft term using the jet area method
 - The contribution due to pile-up in the jet area is subtracted from each Jet: $p_{\tau}^{\text{jetcorr}} = p_{\tau}^{\text{jet}} \rho x A^{\text{jet}}$
 - The are 2 methods which differ only in their calculation of ρ (level of diffuse noise):
 - Extrapolated Jet Area Filtered: ρ as the median of p_{τ}^{jet}/A^{jet} from jets (R=0.4) and $|\eta|<1.8$
 - Jet Are Filtered: ρ as the median of p_{τ}^{jet}/A^{jet} from jets (R=0.8) and $|\eta|<5$

Characterization of samples for E_{τ}^{miss} performance

The importance of the soft and jet terms is shown here:

6

Ξ_{+}^{miss} distribution in Z $\rightarrow \mu\mu$ events: Data/MC

The Z \rightarrow II channel is well-suited to the study of E_{τ}^{miss} performance: clean event signature

The MC simulation, from $Z \rightarrow \mu\mu$ events and from dominant backgrounds, are superimposed

A good agreement between data and MC simulation is observed, both before and after pile-up suppression

Study of E_T^{miss} resolution

The study of the E_{τ}^{miss} resolution is performed using: $R = RMS(E_{\tau}^{miss}/E_{\tau}^{miss,True})/\langle E_{\tau}^{miss,True} \rangle$

The low $E_{T}^{miss,True}$ region ($E_{T}^{miss,True}$ < 40 GeV) is mostly populated by events without jets

Study of E_{T}^{miss} response

It is important to check that the pile-up suppression methods, introduced to reduce the effect of pile-up on the E_{\perp}^{miss} resolution, do not have an adverse effect on the E_{\perp}^{miss} response.

The E_{τ}^{miss} linearity is defined as the mean value of the ratio: $(E_{\tau}^{miss}-E_{\tau}^{miss,True})/E_{\tau}^{miss,True}$

Evaluation of the systematic uncertainty on E_{τ}^{miss}

Overall systematic uncertainty on the E_T^{miss} measurement → combining uncertainties on each term These ones are evaluated given the knowledge of the reconstructed objects that are used to build them In events containing W and Z bosons decaying to leptons:

- Uncertainties on the scale and resolution of leptons and jets \rightarrow propagated to estimate $E_{\tau}^{\ miss}$
- Another significant contribution comes from the soft term:

Two methods used with $Z \rightarrow \mu \mu$:

- Data/MC ratio in events without jets
- Balance between soft terms and hard objects

$E_{\mathrm{T}}^{\mathrm{miss,SoftTerm}}$ uncertainty	data/MC method		balance method		
	scale	resolution	scale		resolution
	(%)	(%)	([GeV])	(%)	(%)
Default	3.6	2.3	< 1 GeV	<13	2.0
STVF	7.9	4.8	< 1 GeV	<12	4.5
Extrapolated Jet Area Filtered	4.7	2.0	< 1 GeV	< 18	3.0
Jet Area Filtered	5.8	2.5	< 1 GeV	< 16	2.0

Data compared with $Z \rightarrow \mu \mu$ MC and MC after scaling and smearing the $E_{\tau}^{\text{miss,SoftTerm}}$ (data/MC ratio method):

Conclusions

- The missing transverse momentum (E_τ^{miss}) performance has been studied in events with different topologies in proton-proton collisions at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector in 2012.
- The value of E_T^{miss} is calculated from calibrated reconstructed objects and from the unmatched topological clusters and tracks (E_T^{miss,SoftTerm}). Several methods for pile-up suppression in the soft term are described, based on the use of tracks (STVF method) or on the jet area method.
- The Monte Carlo simulation describes the data in general rather well. Some discrepancy in data-MC comparison is observed after pile-up suppression in the E_T^{miss,SoftTerm} and in the contribution from jets, due to the corrections applied for pile-up suppression.
- The E_τ^{miss} resolution improves after pile-up suppression in events where the contribution of the soft term is important and it becomes closer to that observed in the absence of pile-up, mainly with the STVF.
- The linearity of the E_T^{miss} measurement is studied in MC simulation as a function of the true E_T^{miss}. Except for the bias observed at small true E_T^{miss} values (visible up to 40 GeV), due to the finite E_T^{miss} resolution, the linearity is better than 5% in all samples and it is very good in events with a very large number of jets.
- The systematic uncertainty on the scale and the resolution of the $E_{T}^{miss,SoftTerm}$ is determined comparing data and MC Z \rightarrow II events with two different methods, and it is found to be of the order of a few percent. The effect of the uncertainty on the $E_{T}^{miss,SoftTerm}$ has a visible effect on the E_{T}^{miss} only before pile-up suppression, while it is negligible after the pile-up suppression because of the strong reduction on the $E_{T}^{miss,SoftTerm}$.

Back-up slides

Medium electron identification selection criteria

Туре	Type Description	
	Loose cuts	
Acceptance of the detector	* $ \eta < 2.47$	
Hadronic leakage	★ Ratio of E_T in the first layer of the hadronic calorimeter to E_T of the EM cluster (used over the range $ n < 0.8$ and $ n > 1.37$)	R _{had1}
	* Ratio of E_T in the hadronic calorimeter to E_T of the EM cluster (used over the range $ \eta > 0.8$ and $ \eta < 1.37$)	R _{had}
Second layer of EM calorimeter	 ★ Ratio in η of cell energies in 3 × 7 versus 7 × 7 cells. ★ Lateral width of the shower. 	$egin{array}{c} R_\eta \ w_{\eta 2} \end{array}$
	Medium cuts (includes Loose)	
First layer of EM calorimeter.	 ★ Total shower width. ★ Ratio of the energy difference associated with the largest and second largest energy deposit over the sum of these energies 	$w_{ m stot}$ $E_{\it ratio}$
Track quality	 ity ★ Number of hits in the pixel detector (≥ 1). ★ Number of hits in the pixels and SCT (≥ 7). ★ Transverse impact parameter (<5 mm). 	
Track matching	* Δη between the cluster and the track (< 0.01).	$\Delta \eta_1$