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What is the Quark Gluon Plasma?

» A new Fundamental state of matter, formed in heavy ion
collisions
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What is the Quark Gluon Plasma?
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» We think it behaves like a strongly coupled fluid
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Figure: Proton-proton collision and resulting Jet
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Figure: Schwinger-Keldysh Contour
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Figure: Leading order diagram for (¢(z))
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Toy Problem: Find (¢(x)) emitted from a static
“quark” in scalar QCD
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Figure: Large mass analytic and numerical results for (¢(x)) in
time (in 1+1 D)



Toy Problem: Find (¢(x)) emitted from a moving
“quark” in scalar QCD
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Figure: Evolution of (¢(z)) in time (in 141 D)
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Can we calculate (T',,)? Are there complications?

Yes and Yes. We take ¢* theory, and calculate (T,,) to
leading order.

Figure: Leading order diagrams for (T',,)

Ty = 0,00, — gy (3 (09)% — $m2? — Ag*)
When we tally these up, the answer is co!



Can we calculate (T',,)? Are there complications?

We need to include an improvement term

1(n—2)
4(n—1)

O =T — (0u0y — guv) ¢’

Callan, Coleman, Jackiw. ANNALS OF PHYSICS: 59, 42-73 (1970)
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Can we calculate (T',,)? Are there complications?

We need to include an improvement term

1(n—2)
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@uu = T;w - (auau - guu) ¢2

Callan, Coleman, Jackiw. ANNALS OF PHYSICS: 59, 42-73 (1970)
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So we can make sense of the Energy Momentum
Tensor in QFT to leading order.
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Conditional Expectation Value

» Specifying only the initial state does not break angular
symmetry

» We want to refine our result by specifying the final state
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» We want to refine our result by specifying the final state
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Figure: Proton-proton collision and resulting Jet
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Conditional Expectation Value

We define the Conditional Expectation Value

15



Conditional Expectation Value

We define the Conditional Expectation Value
in|©,,0(2)O in)

(in|© i)
where ©,; = |out)(out| is the projection operator built from
the out states.

E[O()] fin), Jout)] =
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Conditional Expectation Value
We define the Conditional Expectation Value
in|©,,0(x)Oin)
(in|©in)
where ©,; = |out)(out| is the projection operator built from
the out states.
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Figure: Time contour required for the conditional probability of an
operator O(t)
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Conclusion

» We've explored the possibility of spacetime dependent
QFT calculations

» We found expressions for both (¢)(z) and finite (©,,)(z)
for toy models

» We defined a concept of Conditional Expectation Values

in QFT
The End.
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Back up Slides



Data for QGP
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Figure: CMS Preliminary data for Jet Raa. Taken from

(1409.7545)
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Conditional Expectation Value: Example
For |in) = |¢), |out) = [¢') we find

<1//|¢(I)|1/J>>
(&)l

(At least to first order).

E[$(@)] 1), [4)] = (& |$(@)[¢') + 2ilm (
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Conditional Expectation Value: Example
For |in) = |¢), |out) = [¢') we find

Elp()] [4), [¢)] = (@' |¢(@)|¢) + 2ilm (W [6(z >I¢>>

(&)l

(At least to first order).

This says that if [1) # [¢)'), the expectation of the field is
complex.
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Understanding (¢(z))
We found a general expression for (¢(z)) with Hipe = ghénp

D

Figure: Typical Diagrams for (¢(x)) for |in) = [1)¢)

(6la)) = —ig [ d'z Dae - 2)infu ()02 n)

(Generalizes for arbitrary Hjpn¢

)

20



Understanding (¢(z))

-1 1 x| 2

Figure: Analytic expression in 3+1 D, with comparison to %
potential.

21



Conditional Expectation Value

We define the Conditional Expectation Value
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Conditional Expectation Value
We define the Conditional Expectation Value
E[O(x)| |in), |out)] ZOP lg:)| |in), |out))

_ <|n|@MQ(x)@M||n)
(in|©p/]in)

where ©,; = |out)(out| is the projection operator built from
the out states.
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Conditional Expectation Value
We define the Conditional Expectation Value
E[O(x)| |in), |out)] ZOP lg:)| |in), |out))

_ <|n|@MQ(x)@M||n)
(in|©p/]in)

where ©,; = |out)(out| is the projection operator built from

the OUt StateS This result is actually a generalization of Baye's Theorem.
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Toy Problem: Find (¢(x)) emitted from a static
“quark” in scalar QCD
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Figure: Evolution of (¢(z)) in time (in 141 D)
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How does the Stopping distance in AdS/CFT
depend on the initial conditions?
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Figure: Stopping Distance as a function of radial u.. R. Morad &
W A Harowit—> (1400 754K
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