

Results of the search for an A boson decaying to Zh

Guillermo Hamity

University of the Witwatersrand

February 11, 2015

- Introduce 2HDMs and the 5 Higgs bosons
- · Show where we look for 2HDM models (reducing parameters)
- Look at published results
- Motivate and introduce the $A \to Zh$ analysis
- Touch on some of the details of $\tau_{had} \tau_{had}$
- Results...

Higgs discovery at CMS and ATLAS

No deviations from SM

- σ , BR and couplings of H show no deviation from SM within uncertainties
- Higgs doublet responsible for EW symmetry breaking?
- Is Higgs sector minimal or extended? (BSM)

• SM Higgs sector has experimental constrains:

$$\rho \equiv m_W / (m_Z \cos \theta_W) \rightarrow 1$$

- 2HDM: Simple extension by adding complex Higgs doublet, SU(2).
- Assumptions:
 - CP-conservation
 - Softly broken \mathcal{Z}_2 symmetry ($\Phi_1 = -\Phi_1$)
 - $\circ~$ Electroweak symmetry breaking, and $v_1v_2 \neq 0$

8 fields

3 give mass to W^{\pm} and Z bosons, 5 physical scalar ("Higgs") fields

The Big Five

The Big Five

Reducing 2HDM phasespace

 m_H

 m_A

Degrees of freedom

Possible coupling					
	$1^{\mathrm{st}}_{\mathrm{doublet}}$ $2^{\mathrm{nd}}_{\mathrm{doublet}}$				
Type-I	bosons	fermions			
Type-II	$q^{up} = q^{dn} + \ell$				
Type-III	Lepton Specific				
Type-IV	Flipped				

 m_h

- $m_h = 125$ GeV.
- $m_A = m_H = m_{H^{\pm}}$

Reducing 2HDM phasespace

 m_H

 m_A

Degrees of freedom

Possible coupling				
	1^{st} doublet	2^{nd} doublet		
Type-I	bosons	fermions		
Type-II	q ^{up} q ^{dn} +			
Type-III	Lepton Specific			
Type-IV	Flipped			

 m_h

- $m_h = 125$ GeV.
- $m_A = m_H = m_{H^{\pm}}$

Figure : Constraints in the 2HDM

Coupling ratios $\frac{2HDM}{SM}$ cast as functions of β and α					
Coupling scale factor	Type I	Type II	Type III	Type IV	
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(eta$ - $lpha)$	
κ_u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	
κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	
κ_l	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	

Construction of the state of a LL service of the AUTIAC CONTRACT AND

The coupling scale factor of the Higgs boson h to vector bosons, up and d quark, and lepton of each type expressed as ratios relative to the SM-Higgs couplings.

Reducing 2HDM phasespace

Reducing 2HDM phasespace

$\begin{array}{c} \text{Constrains on new physics via Higgs coupling:} \text{ATLAS-CONF-2014-010} \\ \text{Coupling ratios } \frac{2HDM}{SM} \text{ cast as functions of } \beta \text{ and } \alpha \end{array}$

$\label{eq:cross} \textbf{Cross section} \times \textbf{Branching ratio of A boson}$

- Gluon-fusion is dominant
- b-associated important for Type-II and Type-IV at large an eta

$A \rightarrow Zh$ analysis

• $A \rightarrow Zh$ analysis searching for $m_A \in (220, 1000)$ GeV at 8TeV pp collisons with 20 fb⁻¹.

$A \rightarrow Zh$ analysis

• $A \rightarrow Zh$ analysis searching for $m_A \in (220, 1000)$ GeV at 8TeV pp collisons with 20 fb⁻¹.

$A \rightarrow Zh$ analysis

• $A \rightarrow Zh$ analysis searching for $m_A \in (220, 1000)$ GeV at 8TeV pp collisons with 20 fb⁻¹.

Taus never make the inner-detector (can only look at decays) ATLAS-CONF-2013-064
Non-Tau Jet
Tau Jet

Preselection of HadHad channel

Event Preselection for hadronic channel:

- Single lepton triggers.
- Leptons: 2 loose ℓ SF, OS Z mass window: $80 < m_{ll} < 100$ GeV Isolation: ptcone40/p_T < 0.2 and etcone20/p_T < 0.2

 $\sim Z$ $e^{-,\mu^{-}}$ $e^{+,\mu^{+}}$

- Taus: 2 loose τ_{had} muon and electron vetos H mass window: $75 < m_{ll} < 175$ GeV.
- Events with additional light leptons or $\tau_{had-vis}$ are discarded.

Background Monte Carlo:

- Z+jets (DY)
- Diboson: ZZ,WZ,WW
- Tribozon: WWW*,ZWW*,ZZZ*
- Top: $t\overline{t}$, tW, $t\ell$, $t\overline{t}Z$
- SM assosiated Higgs production: ZH

10 Signal Mass points (in GeV): 220,240,260,300,340,350,400,500,800,1000

The Missing Mass Calculator

 $m_{\tau\tau}$ reconstruction uses **Missing Mass Calculator** Assume non-zero angle between τs and v sSystem of equations with 6-8 unknowns Most likely solution chosen (likelihood)

Nucl. Instrum. Methods, A654, p481-489

Data estimated background

- Blind in signal region.
- Data can boost BKG predictions.
- · Bkgs with fake taus estimated using template.

Template Method

Define 3 control regions populated with fakes:

OS — loose τ	SS — loose τ
OS — !loose τ	SS — !loose τ

- Bkg shape extrapolated from CR to SR
- Bkg normalized using m_A sideband

- Important assumptions:
 - Template m_A shape is good in SR.

- and
 - $\circ~$ Normalisation in h-sideband describes m_h window

Full selection for Hadhad channel

Full Selection

- The leading $\tau_{had-vis}$ is required to have $E_t > 35$ GeV
- For events with $m_A <= 400 \text{ GeV}, Z p_T > (0.64 m_A 131) \text{ GeV}.$
- For events with $m_A > 400$ GeV, $Z p_T > 125$ GeV.

350

400

250

300

Full-selection

500 m_A [MeV]

Experimental systematics negligable when compared to template systematics.

- Experimental
 - Electron, muon, tauID
 - Pile-up and Luminosity
 - Jet Energy Scale
 - Tau Energy Scale
 - Tau Energy Resolution
 - Tau Energy Scale
 - Missing Transverse Energy
 - Jet Vertex Fraction
- Theoretical cross sections used in the normalization

• Template method systematics:

Changes in normalization and template due to different CR

- Region 1 (R1): events with 2 loose τ that are of same sign charge,
- Region 2 (R2): events with 2 τ , where one fails the loose τ ID, of opposite sign charge.
- Region 3 (R3): events with 2 τ that fail the loose τ ID, of opposite sign charge.
- Region 4 (R4): events with 2 τ , where one fails the loose τ ID, of same sign charge.
- $\circ~$ Region 5 (R5): events with 2 τ that fail the loose $\tau~$ ID, of same sign charge.

Limits on $\sigma \times \mathbf{BR}$ for $\tau \tau$ and bb

- · Expected limits derived with asymptotic approximation
- Limits reject 95% CL
- · Limits of each channel is combined

Exclusion plots for combined $\tau\tau$ and bb

Exclusion plots for combined $\tau\tau$ and bb

CMS-PAS-HIG-14-011

- Search for a neutral, CP-odd A-boson, predicted by 2HDMs, decaying to Zh in proton-proton collisions at the at the LHC is TBA.
- · Gluon-fusion + b-associate considered in Type-II and Type-IV.
- Final States for combination:
 - $Z \to \ell \ell$ and h to either $\tau_{lep} \tau_{lep}$, $\tau_{lep} \tau_{had}$ or $\tau_{had} \tau_{had}$. Focus was placed on the $\tau_{had} \tau_{had}$.
 - $A \rightarrow Zh \rightarrow ffb\bar{b}$ analysis, where $f = v, \ell$
- The background predictions and systematic and statistical uncertainties have been calculated.
- Direct expected 95% CL upper limits on the gluon-fusion and b-associated production.
- The resulting limits are interpreted in four 2HDM models.
- · Paper will be ready SOON, aiming to submit to Phys. Lett B
- · Analysis will continue in Run-II at higher luminosity.

Back-up Slide: MC samples

Process	Dataset ID	Generator	Cross Section [pb]	k-factor	efficiency	
${ m SM}ZH$ production						
$ZH(125) \rightarrow \tau_{lep} \tau_{lep}$	161675	Pythia8				
$ZH(125) \rightarrow \tau_{lep} \tau_{had}$	161686	Pythia8	0.02491976	1	0.456192	
$ZH(125) \rightarrow \tau_{had} \tau_{had}$	161697	Pythia8	0.02491976	1.0	0.4199	
		Z + jets				
$Z \rightarrow ee + Np0$	147105	Alpgen	718.97	1.18	1.0	
$Z \to ee + \mathrm{Np1}$	147106	Alpgen	175.70	1.18	1.0	
$Z \rightarrow ee + \mathrm{Np2}$	147107	Alpgen	58.875	1.18	1.0	
$Z \rightarrow ee + \mathrm{Np3}$	147108	Alpgen	15.636	1.18	1.0	
$Z \rightarrow ee + \mathrm{Np4}$	147109	Alpgen	4.0116	1.18	1.0	
$Z \rightarrow ee + {\rm Np5}$	147110	Alpgen	1.2592	1.18	1.0	
$Z \rightarrow \mu \mu + Np0$	147113	Alpgen	719.16	1.18	1.0	
$Z \rightarrow \mu \mu + Np1$	147114	Alpgen	175.74	1.18	1.0	
$Z \rightarrow \mu \mu + \mathrm{Np2}$	147115	Alpgen	58.882	1.18	1.0	
$Z \rightarrow \mu \mu + Np3$	147116	Alpgen	15.673	1.18	1.0	
$Z \rightarrow \mu \mu + Np4$	147117	Alpgen	4.0057	1.18	1.0	
$Z \rightarrow \mu \mu + {\rm Np5}$	147118	Alpgen	1.2544	1.18	1.0	
$Z \rightarrow \tau^+ \tau^- + Np0$	147121	Alpgen	719.18	1.18	1.0	
$Z \rightarrow \tau^+ \tau^- + Np1$	147122	Alpgen	175.72	1.18	1.0	
$Z \rightarrow \tau^+ \tau^- + Np2$	147123	Alpgen	58.862	1.18	1.0	
$Z \rightarrow \tau^+ \tau^- + \text{Np3}$	147124	Alpgen	15.664	1.18	1.0	
$Z \rightarrow \tau^+ \tau^- + Np4$	147125	Alpgen	4.0121	1.18	1.0	
$Z \rightarrow \tau^+ \tau^- + Np5$	147126	Alpgen	1.2560	1.18	1.0	

Back-up Slide: MC samples

Process	Dataset ID	Generator	Cross Section [pb]	k-factor	efficiency
Di-boson					
WW	105985	Herwig	53.899	1	0.38212
WZ	105987	Herwig	22.258	1	0.30546
$ZZ \rightarrow 4e$	126937	Powheg	0.069	1	
$ZZ \rightarrow 2e2\mu$	126938	Powheg	0.145	1	
$ZZ \rightarrow 2e2\tau$	126939	Powheg	0.102	1	
$ZZ ightarrow 4\mu$	126940	Powheg	0.070	1	
$ZZ \rightarrow 2\mu 2\tau$	126941	Powheg	0.103	1	
$ZZ \rightarrow 4\tau$	126942	Powheg	0.008	1	
		Single top			
single top: $t - \text{channel } W \rightarrow ev$	117360	AcerMC	9.48	1	1
single top: $t - \text{channel } W \rightarrow \mu v$	117361	AcerMC	9.48	1	1
single top: $t - \text{channel } W \to \tau v$	117362	AcerMC	9.48	1	1
single top: s – channel $W \rightarrow ev$	108343	MC@NLO	0.606	1	1
single top: s – channel $W \rightarrow \mu \nu$	108344	MC@NLO	0.606	1	1
single top: s – channel $W \rightarrow \tau \nu$	108345	MC@NLO	0.606	1	1
single top: Wt – channel	108346	MC@NLO	22.37	1	1
$tar{t}$					
$tar{t}$ (no hadronic)	105200	MC@NLO	238.06	1	0.543
$tar{t}(ext{all hadronic})$	105204	MC@NLO	238.06	1	0.457
$t\bar{t}Z$	119355	MadGraph	0.0677	1.34	1.0

Table : Details for the simulated background samples that are used in this analysis.