

A COMPARATIVE STUDY OF THE RADIATION HARDNESS OF PLASTIC SCINTILLATORS FOR THE UPGRADE OF THE TILE CALORIMETER OF THE ATLAS DETECTOR

Shell-may Liao Supervisor: Prof. Bruce Mellado

Thanks to: B. Mellado, E. Haddad, H. Jivan, C. Pelwan, G. Peters, iThemba LABS Gauteng team

OUTLINE

- Introduction
- Scintillation mechanism
- SRIM and TRIM simulations
- Sample preparation
- Radiation process
- Transmission spectroscopy
- Results and analysis
- Conclusion

INTRODUCTION

✤ Scintillators exhibit luminescence when excited by ionizing radiation

✤ PVT based scintillators: EJ 200, EJ 208, EJ 260

 Experimental procedure sample dimensions: 500μm x 500μm x 350 μm

SCINTILLATION MECHANISM

Common feature in plastic scintillator = benzene ring

 Delocalized electrons are prone to excitation

✤ Electronic levels of a PVT molecule

✤ PVT base is doped with flours

 Fluors absorb the base scintillation and emit at longer wavelengths

SRIM SIMULATIONS

R Calculation: SRIM Outputs\Hydrogen in Polyvinyltoluene (ICRU-570) 1.txt						
SRI Cale	M version> SRIN c. date> Augus	Л-2013.00 t 10, 2014				
Disk File Na	me = SRIM Outputs	s\Hydrogen in P	olyvinyltoluen	e (ICRU-570) 1.txt		
Ion = Hydrog	en [1] , Mass = 1.0)08 amu				
Target Densi ===== Ta Atom Ato Name Nu	ty = 1.0230E+00 g rget Composition = m Atomic Mass mb Percent Perc	y/cm3 = 9.8606E ====== s cent	E+22 atoms/c	:m3		
H 1 C 6	052.38 008.45 047.62 091.55					
Bragg Correct Stopping Uni See bottom of	tion = 0.00% ts = MeV / (mg/cn of Table <mark>f</mark> or other St	n2) copping units				
lon Energy	dE/dx dE/dx Elec. Nuclea	Projected Lon r Range S	gitudinal Lat traggling Str	teral raggling		
3.50 MeV 3.75 MeV 4.00 MeV 4.50 MeV 5.00 MeV 5.50 MeV 6.00 MeV	1.068E-01 6.575E 1.012E-01 6.183E 9.624E-02 5.836E 8.772E-02 5.253E 8.070E-02 4.780E 7.482E-02 4.388E 6.980E-02 4.059E	-05 184.54 um -05 208.00 um -05 232.72 um -05 285.83 um -05 343.83 um -05 406.64 um -05 474.17 um	7.39 um 8.16 um 8.95 um 11.81 um 14.51 um 17.15 um 19.79 um	5.01 um 5.61 um 6.24 um 7.59 um 9.05 um 10.63 um		
5.50 MeV 7.00 MeV 8.00 MeV	6.169E-02 3.533E 5.539E-02 3.133E	-05 546.36 um -05 623.16 um -05 790 16 um	22.43 um 25.09 um 34.78 um	16.03 um 20 16 um		

✤ About SRIM

Stopping Range of 6MeV protons in PVT

Stopping range = 474.17 μm

TRIM SIMULATIONS

======================================										
===== TRIMOUT.txt: File of Transmitted / Backscattered / Sputtered Atoms =====										
= This file tabulates the kinetics of ions or atoms leaving the target.										
= COI	umn	<pre>#1: S= Sputte</pre>	ered Atom, B= Backscattered Ion, T= Transmitted Ion. =							
= C01	.#2:	Ion Number,	Col.#3: Z of atom leaving, Col.#4: Atom energy (eV). =							
= COI	. #5-	-/: Last locat	ion: X= Depth into target, Y,Z= Transverse axes. =							
= COI	.#8-	-10: Cosines o	of final trajectory.							
= ***	This	data file is	in the same format as TRIM.DAT (see manual for uses).=							
	TR	IM Calc.= H(6	Mev) ==> Polyvinyitoluene (ICRU-5(350 um) =========							
Ion	ATO	Energy	Depth Lateral-Position Atom Direction							
NUMD	Num	(eV)	X(A) $Y(A)$ $Z(A)$ $COS(X)$ $COS(Y)$ $COS(Z)$	0353765						
1 1	1	.2/63609E+0/	3500002E+004501E+05 .2516E+05 .9996/90 .001/40/ .	0252/05						
1 2	+	.2820503E+07	3500002E+0023/1E+05 .2213E+04 .9999814 .004/584 .	0038243						
1 3	+	.2/03196E+0/	3500000E+00 .9/20E+05 .22/2E+05 .9984301 .055961/ .	00230/0						
1 4	+	.2812012E+07	3000002E+004041E+03 .2434E+03 .9999338300/0314 .	028/180						
	-	.2803/3/E+0/	3000001E+00 .9010E+00/824E+03 .990/404 .0009000	0010000						
T 7	+	.2/34043E+0/	3500001E+004900E+043509E+05 .9999428 .0100430	0010808						
T 0	1	29/40/2E+0/	35000002E+002539E+03 .3369E+03 .99940390102937 .	0310/90						
+ 0	1	27164505:07	3300000E+002313E+03 .3332E+03 .999330300/2222 .	01505565						
T 10	1	22/10439E+0/	2500002E+003/30E+032049E+03 .9990003 .0224133 2500002c+00 2257c+05 5100c+05 0000742 0050041	0142275						
T 11	1	2091900E+0/	3500002E+00 .3537E+03 .3190E+03 .9990742 .0000041 .	0145275						
+ 12	1	2034334E+0/	2500002E+004300E+03022E+0399950230033902 2500002E+004222E+056801E+0500825210282221	0309220						
T 12	1	20200125+07	25000002+00 2048E+05 - 4502E+05 .0078216 .0202221	0268260						
T 14	1	2823762E+07	35000002000 - 2533005 - 1785000 - 0004604 - 0232535	0232007						
T 15	1	20206155+07	2500000E+00 3324E+05 5612E+04 .99940040232335 -	0232007						
T 16	1	29087865+07	350000000000000000000000000000000000000	0254207						
T 17	1	2884351E+07	3500000E+00 - 6837E+04 1574E+05 99930007 .0030014	0278034						
T 18	1	28448446+07	35000012400 - 40482404 - 28076405 - 0000033 - 0025253	0026642						
T 10	1	2718841E+07	3500002E+00 - 9026E+04 - 2370E+05 9993491 0234105 -	0274475						
T 20 1 2895690E+07 3500002E+00 3003E+05 2082E+04 9907052 0104663 0055414										
T 21	1	2799384E+07	3500002E+00 1870E+05 7439E+04 9993571 0326993 -	0147039						
T 22	1	2890650E+07	3500002E+00 .2534E+05 - 3261E+05 .9997599 .0038053 -	0215802						
	*	and the state of the state of the	330000ELOV (E)34ETO) -13E0ETO) (3331/333 (0030033 -1	0523002						

✤ Transport of 6MeV protons in PVT

✤ Average energy of transmitted protons = 2.8MeV

✤ Thus energy lost by
6MeV protons =
3.2MeV

 $=\frac{it \times E_{lost}}{q \times m}$

R

SAMPLE PREPARATION

Employed metallographic techniques:

- Documentation •20 cm x 2 cm x 1cm
- Sectioning and cutting
- Mounting
- Rough Polishing
- Final polishing

Polished samples range:

 $300\ \mu\text{m}-380\ \mu\text{m}$

RADIATION PROCESS

✤ Tandem accelerator of iThemba LABS Gauteng

- ✤ Exposure doses:
 - 80 MGy
 - 25 MGy
 - 8 MGy
 - 0.8 MGy

RADIATION PROCESS

Irradiation date	Sample type	Sample number	Sample thickness (µm)	Energy lost (MeV)	Approximate beam current	Approximate beam time (min)	Dose (Mega Gray)
27-Aug-14	EJ 200	13	365	3.4	13-16 nA	35	85.58
	EJ 208	11	320	2.83	16-18 nA	30	80.78
28-Aug-14	EJ 260	13	360	3.33	10-12 nA	45	82
18-Sep-14	EJ 208	12	300	2.71	1.2-1.4 nA	45	8.8
19-Sep-14	EJ 260	15	360	3.33	2.2 nA	23	8.5
	EJ 200	11	340	3.07	1.3 nA	39	8.3
29-Sep-14	EJ 260	18	330	2.95	0.45-0.55 nA	11	0.88
30-Sep-14	EJ 200	14	385	3.68	0.4 nA	12	0.831
	EJ 208	13	300	2.71	0.45-5 nA	12	0.858
06-Oct-14	EJ 208	15	350	3.2	2.5 nA	60	24.8
	EJ 200	16	330	2.95	3.5 nA	45	25.4
07-Oct-14	EJ 260	19	350	3.2	3 nA	52	25.8

TRANSMISSION SPECTROSCOPY

- Why transmission spectroscopy?
- ✤ Dual beam spectrometer

 Spectra recorded as percentage of light transmission through air

TRANSMISSION SPECTROSCOPY

			TRANSMISSION TESTING					
	Sample	Irradiation date	Day of irradiation	2/3 days after irradiation		1 week after	4 weeks after	
15	EL 200 #13	27-Aug		29-010		03-Sen	25-Sen	
Me	EJ 200 #15	27-Aug		29-Aug		03-Sep	25-Sep	
80	EJ 260 #13	28-Aug		30-Aug		04-Sep	26-Sep	
(5)	EJ 208 (#12)	18-Sep	18-Sep	19-Sep		25-Sep	16-Oct	
ž	EJ 260 (#15)	19-Sep	19-Sep	20-Sep		26-Sep	17-Oct	
00	EJ 200 (#11)	19-Sep	19-Sep	20-Sep		26-Sep	17-Oct	
U U	EJ 260 (#18)	29-Sep	29-Sep	30-Sep	01-Oct	09-Oct	27-Oct	
2	EJ 200 (#14)	30-Sep	30-Sep	01-Oct	02-Oct	10-Oct	28-Oct	
O	EJ 208 (#13)	30-Sep	30-Sep	01-Oct	02-Oct	10-Oct	28-Oct	
25 MG	EJ 208 (#15)	06-Oct	06-Oct	07-Oct	08-Oct	13-Oct	03-Nov	
	EJ 200 (#16)	06-Oct	06-Oct	07-Oct	08-Oct	13-Oct	03-Nov	
	EJ 260 (#19)	07-Oct	07-Oct	08-Oct	09-Oct	14-Oct	04-Nov	

UNIRRADIATED TRANSMISSION DATA

EJ 208 & EJ 260 TRANSMISSION PLOTS

% Transmission versus Wavelength for EJ 260 for different exposure doses

% Transmission versus Wavelength for EJ 208 for different exposure doses

TRANSMISSION DATA

Sample	Dose (Mega Gray)	% Transmission difference	Sample	Dose (Mega Gray)	% Transmission difference
	80	42.90%	0	80	60.84%
8	25	28.60%	NIA	25	34.80%
E	8	14%	Į.	8	7.42%
	0.8	3.90%	H	0.8	3.28%
1000	80	29.10%	-	80	51.23%
508	25	14.90%	SNA	25	35.08%
Ē	8	4.70%	n	8	26.62%
	0.8	2,50%		0.8	5.54%
EJ 260	80	44.80%	-	80	45.50%
	25	15.50%	NO NO	25	39.48%
	8	14.30%	BIC	8	11.45%
	0.8	6.60%		0.8	8.66%

EJ 208 TRANSMISSION PLOT (ANNEALING ID)

EJ 200 TRANSMISSION PLOT (ANNEALING ID)

CONCLUSION

- Radiation exposure = decrease in light transmission in all grades
- Increase in dose = decrease in transmission
- Samples undergo annealing
- Possible formation of free radicals (EPR)
- Raman and light yield studies were done by Ms. Harshna Jivan
- ✤ EJ 208 exhibits the best light transmission properties
 - \checkmark Lowest decrease in % transmission for most doses
 - * Large amount of healing in short period of time.

• According to Markley et al, "A radiation hard plastic scintillator can be defined as a scintillator that does not exhibit a large decrease in light yield output when exposed to ionizing radiation and which can recover a substantial amount of its light output in a short time after being irradiated".