Overview of iThemba LABS

Simon Mullins iThemba LABS

Outline:

- Accelerator Mass Spectrometry (AMS) at iThemba LABS (Gauteng)
- Rare Isotope Beam (RIB) Project at iThemba LABS (Cape)

Nuclear Research Facilities in South Africa

iThemba LABS in the Cape (Mother Ship)

Themba LABS

iThemba LABS in Gauteng (AMS about to fly)

Tandem Accelerator beam-injection system at the (then) Schonland Research Institute along with Miklos Rebak.

Old Injection System no more

Injection Side of the Tandem Accelerator after Refurbishments

iThemba LABS

arch | Laboratory for Acce tion | Based Sciences

Pelletron & gas stripper box installation in 6 MV EN Tandem Accelerator

ational Research | L Foundation | B aboratory for Accelerato ased Sciences

High Energy Extraction side of Tandem before the refurbishment

Extraction beam line of tandem accelerator post-refurbishment

EPICS control system implemented for tandem accelerator

Layout of AMS system for iThemba LABS Gauteng

Negative Ion Source by Cesium Sputtering using the LLNL design (IAEA-funded)

Plan view of Low-Energy Injection System with BPMs

AMS Injection System - Diagnostic Components

Low Energy 90 Degree Bending Magnet

Low Energy Injection Magnet manufactured in KZ-N

n | Laboratory for Acceleration **n** | Based Sciences

Low-Energy Injection System under commissioning Dec'2012/Mar 2013

March 2014 : Further commissioning of LEIS

Rebuilt existing pre-AMS high energy beam lines:

Replaced analyzer magnet with larger magnet (better mass*energy product)
Replaced magnetic elements with electrostatic devices – AMS requirement
Replaced magnetic doublet after analyzer magnet with triplet arrangement

March 2014 : National Electrostatics Corporation (NEC) High Energy Analysis System under Installation (replica of SUERC system)

March 2014 : High Energy Analyzing Magnet under Installation

July 2014 : First commissioning of complete AMS system

iThemba LABS **National Research**

7th July 2014 : SAIP2014 AMS Workshop at iThemba LABS : opening address by the Hon. Mrs Naledi Pandor, Minister of Science and Technology, who later declared Africa's first AMS facility open

July 2014 : First fully operational detection of ¹⁴C ions via AMS in Africa from Ox-II standard supplied by Tom Brown of CAMS, LLNL, USA

 $\Delta E \rightarrow$

November 2014 : First detection of C14 ions by iThemba LABS AMS team (alone!)

National Research

iThemba LABS

arch | Laboratory for Acc ation | Based Sciences

Users : Centre of Excellence for Palaeosciences (hosted by University of the Witwatersrand)

Users : South Africa Antartic Programme (¹⁰Be in ice-cores)

Users : Rock Art Research Institute (University of the Witwatersrand)

Commissioning Africa's first AMS facility at iThemba LABS: **Progress Report**

Indexails sime, interest Females confirms

(With Support from the NRF, the IAEA and the DST) S.M. Mullins, A. Zondervan⁺, C.G. Badenhorst, K.F. Balzun, J.L. Conradie, J.G. Delsink, J.G. DeVilliers, D. Fourie, V.L. Mbele, A.S. Miller, O. Pekar, K.G. Sekonya, P. Van Schalkwyk, S.M. Woodborne

Introduction : refurbishments, upgrades and installations

The 6MV Tandem accelerator facility at the Gauteng site of iThemba LABS, South Africa, has been upgraded to enable AMS measurements to be undertaken. The upgrades and installations include:

- 1 The commissioning of a replica of the CAMS (LLNL) multi-cathode ion source funded by the IAEA. In-house design and RSA manufacture of a 90° injection magnet with bouncing system.
- Installation of a pelletron charging system and new high voltage resistors for stable TV up to 5MV.
- Installation of a high energy analysis system (HEAS) from NEC based on the system at SUERC.
- ➤ The HEAS includes a ME/Z² = 176 double focusing magnet (1.27 m radius) with M/ΔM = 725 and a
- 20° electrostatic cylindrical analyzer (ECA) of 150" (3.81 m) radius with $E/\Delta E = 200$.

A multi-anode gas-ionization detector is installed with a further one obtained via the IAEA. > A radiocarbon sample preparation laboratory is under completion funded by the NRF and the IAEA.

Figure 1. (Left) Schematic of the iThemba LABS AMS facility showing the refurbished 6MV Tandem Accelerator, the low energy injection system and the recently installed high energy analysis system.

First steps : the injection, acceleration, selection and detection of ¹⁴C ions

The initial commissioning recently took place led by an IAEA expert mission⁺ with these milestones achieved :

- ¹²C transmission for 3⁺ and 4⁺ charge states was measured at a terminal voltage of 3.3 MV.
- ¹¹C and ¹²C ions were detected in the Faraday cups after the high energy analyzing magnet.
- ¹⁴C ions were identified in the gas ionization detector (see figure 2).

Figure 2. (Right) Screen-capture of E-AE spectrum showing the first AMS identification of ¹⁴C ions (middle "blob" of the upper-right group of three) in Africa from an Ox-II standard (supplied by Tom Brown).

Next steps : guantitative measurements

Analyses with the fully commissioned facility have been requested by : $\Delta E \rightarrow$ A The Rock Art Research Institute at Wits University and the PanAfrican Archeological Association. The DST/NRF Centre of Excellence in Palaeosciences hosted by Wits University. CThe South African National Antartic Programme (SANAP) for ice cores obtained from Queen Maud Land.

The development of the AMS facility was funded by the National Research Foundation (NRF) , the IAEA and iThemba LABS. Additional support has been received from Tom Brown (LLNL), Peter Steier (VERA), Ron Reimer (QUB) and John Southon (UCI).

August 2014 : Poster presented at AMS-13 conference in Aix-en-**Provence, France**

iThemba **RF** LABS

Back to iThemba LABS in the Cape.....

iThemba LABS

iThemba LABS

National Research | La Foundation | Ba

aporatory for Accelerato ased Sciences

Multi-User Facility

•Proton Therapy: 200 MeV p

•Neutron Therapy: 66 MeV p, $\sim 40 \mu A$

•Isotope Production: 66 MeV p, up to 350µA

•Nuclear Physics: various beams

Separated-Sector Cyclotron Facility

SSC Beam Schedule

iThemba

_ABS

Proton Therapy

Present Schedule Restricted to 2 "Fractions" / week •Brain tumours

If schedule allowed 5 "Fractions" / week

- •Paediatric tumours
- Tumours close to critical structures
- •Brain tumours
- •Gastro-intestinal tumours (rectum, liver, pancreas)
- Prostate tumours
- Lung tumours
- Recurrent tumours

Proton-therapy computer-controlled treatment setup at iThemba LABS

iThemba LABS
Proton Therapy : Delivered in "fractions"

PROTON PLANS: PITUITARY ADENOMA

Plateau irradiations

COMBINATION Plateau and SOBP irradiations

Foundation | Labor

Neutron therapy treatment vault at iThemba LABS

Neutron therapy treatment at iThemba LABS

Nuclear Physics Research

- Nuclear Structure
 - Pairing Isomers
 - Pairing Vibrations
 - Tetrahedral Shapes
 - Hyperdeformation
 - Chirality
 - Giant Resonances
- Nuclear Reactions
 - Fusion Barrier Distributions
 - Incomplete Fusion
 - Astrophysical reactions
 - Production of intermediate mass fragments
 - Reaction Mechanisms

Nuclear Physics Research K600 Spectrometer

Research results published in high-impact, internationally-recognized journals :

Nuclear Physics Research AFRODITE at iThemba LABS γ -ray spectroscopy

9 Compton Suppressed **Clover detectors**

8 LEPS detectors

"search for a tetrahedral nucleus" ¹⁴⁷Sm(¹⁶O,3n)¹⁶⁰Yb

The Future of ABS in SA : A New Cyclotron at iThemba LABS

Isotope Production off SSC (uses 66 MeV p beam) (neutron therapy to be terminated?)
Free SSC for use by Physics and proton therapy only (PT to get 230 MeV machine?)
More than doubles physics beamtime
Two accelerators allow the production of rare isotope beams using the ISOL method

160 C70 GENERAL DESCRIPTION

- Diameter < 4m
- Weight > 120t
- Magnetic Gap: 30mm
- Magnetic field: 1.55T
- Extraction Radius: 1.2m
- 2 exit ports

- Particles: (I⁻ / D⁻ / He²⁺ / HH⁺
- Variable Energy : 15 MeV → 70 MeV
- extraction Systems:
 - Stripper \rightarrow H⁻ / D⁻
 - ➢ Deflector → He²⁺/ HH⁺
- Performances:

750μA H⁻ → 70MeV Themba 35μA He²⁺ → 70MeV High Energy Particle Physics Workshop, iThemba LABS, 11-13 February 2015

Laboratory for Accelerator Based Sciences

PO Box 722 Somerset West 7129 South Africa Tel: +27 (0)21 843 1334 Fax: +27 (0)21 843 3460 http://www.tlabs.ac.z Email: director@tlabs.ac.za

A RADIOACTIVE-ION BEAM FACILITY

AT ITHEMBA LABS

SCIENTIFIC AND TECHNICAL REPORT

RIB-PUB-03

Edited by Drs R.A. Bark & J.C. Cornell iThemba LABS

http://www.tlabs.ac.za/radioactive-ion-beam/

High Energy Particle Physics Workshop, iThemba LABS, 11-13 February 2015

sed Sciences

RIBs - HOW? - Isotope Separation Online : ISOL

Nuclear Physics: Why Rare Isotope beams?

Origin of the elements: astrophysical r-process

Predictions of Nuclear Masses Compared with Experiment

Which Rare Isotope Beams?

Beams for material sciences
⁷Be, ²²Na, ²⁸Mg, ³¹Si, ³⁸Cl, ⁴⁷V, ⁴²K, ⁴³K,
⁶⁵Ni, ⁶⁷Cu, ⁶⁷Ga, ⁶⁹Ge, ⁷¹As, ⁷³Ga, ¹¹⁰Sn,
¹¹¹Ag, ¹¹³Ag, ¹¹⁷Cd, ¹¹⁹Sb
^{6,8}He
Proton Rich ?
Neutron Rich: Fission Target

Proton –rich \Rightarrow different target per beam Neutron-rich \Rightarrow one ²³⁸U target; 100 beams

Reaching the neutron rich: FISSION URANIUM

Nuclear Landscape

Proposed layout of the RIB facility at iThemba LABS

RIB production

Demonstrator with "Unaccelerated" RIBs

RIB ion-source Test Station + β -decay + Materials

Possible location of RIB test ionsource

Demonstrator to test Legnaro SPES target/ion-source – under MoU

RIB Production 70 MeV protons 350 μ A to 1 mA (shaded) compared with SPES, SPIRAL 2 and FRIB

RIB demonstrator : low energy (LE) Beams for Materials Research

Example : Solid State Physics at ISOLDE (LE RIBs)

Lattice location of Fe in Diamond

K. Bharuth-Ram et al.

⁵⁹Mn (t_{1/2} = 4.6s) implanted into Diamond, decays to ⁵⁹Fe which β-decays with t_{1/2} = 45 days

Electron emission channeling Measurements indicate that 65% of Fe atoms lie within 0.2 Å From a substitutional site

Instrumentation

Item	MR	MR
Nuclear physics:		124.00
TIGRESS type detectors (x8)	56.00	
Large-acceptance spectrometer	50.00	
Active target	11.00	
K600 spectrometer instrumentation	3.00	
Neutron Physics beamline (stable beams)	2.00	
Position-sensitive proportional avalanche counter	2.00	
Materials science equipment:		10.00
Total		134.00

iThemba LABS

Testing of Silicon Carbide (SiC) target successful (Radioactive Ion Beam Project)

On the 17th of May, team members of a collaboration between iThemba LABS and INFN Legnaro, Italy, conducted a high-power test of a Silicon Carbide (SiC) target, for Rare-Ion Beam production. Rare-Ion beams, produced artificially by a stable beam from a primary accelerator, are short-lived isotopes that represent the cutting edge of basic nuclear physics research and have applications in the material sciences. In a collaboration between the two laboratories, the target was designed by Alberto Monetti, while visiting the iThemba LABS Radioactive-Ion Beam group in 2012. The target was subjected to 4kW of primary beam power (60 μ A of 66 MeV protons) from the Separated Sector Cyclotron of iThemba LABS for about an hour. The goal was not to extract rare-ions, but to test whether the target could withstand the power and stresses induced by the primary proton beam. The temperature and radioactivities of the target were monitored in a successful validation of the computer simulations of its performance. A SiC target is likely to be the first to be used on the Rare-Ion Beam test facility, funded by a Strategic Infrastructure Grant from the NRF, and in the early stages of implementation at iThemba LABS.

Special thanks to the members of the Accelerator & Engineering, Workshop, I.T., Isotope Production & Radiation Safety Departments, and to the supporters of the RIB project, for making it all possible !

Photo: team members monitoring the temperature probes on the target after reaching 60 μ A of beam current.

Dr Robert Bark Leader,

Radioactive Ion Beam Project

iThemba LABS

www.tlabs.ac.za

tel: 021 843 1123

http://www.tlabs.ac.za/news-3/

First RIB test with SiC target : May 2014

• There is world-class infrastructure and expertize in Accelerator-Based Nuclear Sciences in South Africa, but this needs to be funded at a level to continue to development and deliver

- Deliver what? High-impact research outputs and highly skilled people
- Partnerships between National Facilities (like iThemba LABS), HEIs and the Nuclear Power Sector need to be strengthened and expanded
- S/He who hesitates is lost! We need to start to invest now to enable these partnerships to deliver!

Acknowledgements:

• AMS : the NRF, the DST, the IAEA and colleagues at iThemba LABS (Cape and Gauteng)

• RIB : Dr Rob Bark (Project Leader)

Thank you for your attention

SSC Beam Schedule

iThemba LABS Radionuclide Distribution Network

Radio-Nuclide Production (primarily medical) [HoD : Dr Clive Naidoo]

- Many customers, both international & local
- How to boost production rate?
- Higher beam current (as long as targets can take it)
- "Flat-Topping"

THE EFFECT of FLAT-TOPPING RF-VOLTAGE ACROSS THE ACCELERATION GAP

Solid-pole injector cyclotron 1 (SPC1)

Separated-Sector Cyclotron (SSC)

National Research Labo Foundation Base

poratory for Accelerato sed Sciences
FLAT-TOPPING IN A NUTSHELL

IMPROVE BOTH THE BEAM QUALITY AND INTENSITY OF THE 66 MeV p⁺ BEAM

Without Flat-topping => pure sinusoidal rf-voltage for acceleration

Layout of the beam splitter

Electrostatic channel – a mirror image of PSI design

lation | Laboratory for Acce

Magnetic channel

Beam direct behind the electrostatic channel

Beam in front of the magnetic channel

Measured beam current on the two target stations

iThemba LABS cGMP Radiopharmaceuticals

Supply over 60 local Nuclear Medicine Hospitals and Private Clinics

Radionuclide	Half-Life (hours)	Nuclear Reaction	Radiopharmaceutical Product	Main Use
¹⁸ F	1.83	¹⁵ O(p,n) ¹⁸ F	¹⁸ F-FDG	Glucose metabolic studies
⁶⁷ Ga	78.3	Zn(p,xn) ⁶⁷ Ga Ge(p,x) ⁶⁷ Ga	⁶⁷ Ga-citrate	Localization of certain tumours and inflammatory regions
⁸¹ Rb/ ^{81m} Kr	4.58	Kr(p,xn) ⁸¹ Rb	⁸¹ Rb/ ^{81m} Kr generator	Lung ventilation studies
¹²³	13.2	¹²⁷ I(p,5n) ¹²³ Xe → ¹²³ I	¹²³ I-sodium iodide ¹²³ I-mIBG	Thyroid studies Localization of certain tumours such as neuroblastoma, pheochromocytoma
⁶⁸ Ge/ ⁶⁸ Ga generator	⁶⁸ Ge = 271 d ⁶⁸ Ga = 68 min	⁶⁹ Ga(p,2n) ⁶⁸ Ge	⁶⁸ Ga –DOTA-peptides	Typically detection of neuroendocrine tumours

iThemba LABS Long-Lived Radionuclides

Supply over 60 clients worldwide

Radionuclide	Half-Life (days/years)	Nuclear Reaction	Main Use
⁸² Sr	25 days	Rb(p,xn) ⁸² Sr	Used to manufacture ⁸² Sr/ ⁸² Rb generators
⁶⁸ Ge	271 days	Ga(p,xn) ⁶⁸ Ge	Used to manufacture ⁶⁸ Ge/ ⁶⁸ Ga generators and calibration sources for PET CT scanners
⁸⁸ Y	106.6 days	Sr(p,xn) ⁸⁸ Y	Non –medical application –calibration sources
¹⁰⁹ Cd	453 days	Ag(p,xn) ¹⁰⁹ Cd	Non-medical application-calibration sources
²² Na & ²² Na positron sources	2.602 years	Mg(p,n) ²² Na	Used in Material Sciences -Positron Annihilation Studies

Targets for radionuclide production

Radionuclide	Target	Energy window (MeV)
⁶⁷ Ga	Zn Ge	34.3 → 18.1 60.7 → 38.7
⁶⁸ Ge	Ga "Ga ₂ O"	$\begin{array}{c} 34.0 \rightarrow 2.4 \\ 34.0 \rightarrow 0.0 \end{array}$
⁸¹ Rb	RbCl	62.6 → 57.7
⁸² Sr	Rb	61.5 → 39.4
¹⁰⁹ Cd	Ag	34 .0 → 0.0
123	Nal	62.6 → 47.6
⁸⁸ Y	SrCl	34.0→ 0.0
²² Na	Mg	61.5 → 40.0
¹⁸ F	[¹⁸ O]Water	18.0 → 0.0

Bombardment Station-HBTS

Produce: ⁶⁷Ga, ¹²³I and ⁸¹Rb ⁶⁸Ge, ⁸²Sr, ²²Na, ⁸⁸Y, ⁵⁷Co and ¹⁰⁹Cd

Horizontal Beam Target Station (HBTS)

66 MeV proton beam with an intensity of 80-90 μA

Bombardment Station-VBTS

Produce in Tandem ⁸²Sr/⁶⁸Ge ²²Na/⁶⁸Ge

Vertical Beam Target Station (VBTS) 66 MeV proton beam with an intensity of ~250 µA

iThemba

VBTS Thick Target Holders

VBTS Tandem targets

RNP Control Room

Automated Transport System

Upgrade of control systems such as cooling systems, interlocking systems and transport system.

Upgrade of Targetry Cooling Systems for dual beams

Helium Cooling Systems that can deliver 70 m³/hr to operate two bombardment stations simultaneously

Water Cooling Systems that can deliver in total 300 L/min to operate two bombardment stations simultaneously

Tandem target for the production of ⁸²Sr and ⁶⁸Ge

Chemical Processing Facilities

¹⁸F-Automated Chemical Processing Hot Cells

Manual Manipulator Hot Cells

3 X Independent Clean Rooms

⁶⁸Ge/⁶⁸Ga

¹⁸F-FDG

Dispensing Facilities

Comecer Hotcells & Timothea Dispensing Facilities

Quality Control Facilities

18F-FDG Quality Control

Quality Control Microlab

Packaging and Dispatch

As per IATA (International Air Transport Assoc') Regulations

