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• Quark-Gluon Plasma and Heavy-Ion Collisions 

• Flow and Collectivity 

• Jet Quenching 

• Heavy-Flavor Production 

• Photons 

 



Quark-Gluon Plasma 

Compression 
• reduce distance 

between nucleons 

Heating 
• thermally create pions 
• fill space between nucleons 

• hadrons overlap 
• quarks roam freely over large volume 

(deconfinement) 
• Quark-Gluon Plasma 
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Phase Diagram of Nuclear Matter 
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High density or 
high temperature 
→ QGP 
• phase 

transition at 
170 MeV ≈  
2 trillion Kelvin 

 
Accessible with 
accelerators: 
RHIC, LHC 
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Collisions of Heavy Nuclei 
• Pb-Pb @ √sNN = 2.76 TeV 
 
Quark-Gluon Plasma 
• deconfined phase of quasi-free 

quarks and gluons 
• LHC–highest energy HI collisions 

– hottest and longest lived QGP 
– ideal environment 

 
Hadronisation 
• fragmentation and quark 

coalescence produce hadrons 
• formed after end of QGP phase 
• thousands of particles 

 
Photons 
• no final state interaction 
• direct signal from all phases of 

collision 
 

Heavy-Ion Collisions 



The Little Bang 
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Relativistic Heavy Ion Collider 

Tom Dietel 

since 2000 
Au-Au @ √snn 200 GeV 

Brookhaven National Lab 
Long Island, NY, USA 
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CMS 

LHCb 

ATLAS 

ALICE 



Probing the QGP 

scattering experiments 
• external illumination 
• not possible 

 
bulk: products from the medium 
• QGP expands, cools down, 

hadronises 
• particle species, spectra, flow 

 
hard probes 
• production in collisions 
• rare → traceable 
• interaction with medium 
• energetic quarks → jets, 

quarkonia 
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Centrality 

Energy in beam  
direction (EZDC) 

Spectators 

Participants 

central collisions: small impact parameter, many participants, many collisions between 
participants 
peripheral collisions: large impact parameter, few participants, mostly spectators 
 
system size 
• b: impact parameter  
• Npart: number of participants 
• Ncoll: number of nucleon-nucleon collision 
• percentile of total cross section, e.g. 0-5% most central collisions 

 

central 

peripheral 



Relativistic Hydrodynamics 
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• Initial Conditions 
– geometry and density in 

collision region 

– Glauber vs. Gluon Saturation 
(e.g Color-Glass Condensate 
CGC) 

– thermalization time T0 

 

 

• Medium Properties 
– equation of state (EOS) 

• QGP or hadron gas 

– viscosity η 

– mean free path λ 

 

• Relativistic Euler Equation 
– evolution of density and motion 

with time 
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• Radial flow 
– Only type of transverse flow that 

occurs also at impact parameter b = 0 

– Influences the shape of pT spectra 
(transverse expansion) 

 

• Elliptic flow 
– Caused by anisotropy in overlap 

region for b ≠ 0 (pressure gradient) 

– Needs early thermalization 

 

• Directed flow 
– Built up during pre-equilibrium phase 

– Decreases with increasing CMS 
energy 

Collectivity 



Elliptic Flow 
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• Anisotropy (almond shape) 

in the overlap region 

translates in anisotropy in 

the momentum distribution 

• Caused by different 

pressure gradients in and 

out of the reaction plane 

 

 

 

• Needs: 

– Early thermalisation 

– Strong coupling  

dPx

dx
>

dPy

dy

reaction plane (x-z) 

x 

y z 
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Further Information from Direct Photon Elliptic Flow

19
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Expansion In Plane

Hiroshi Masui (2008)

spatial

anisotropy

momentum

anisotropy
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Analogy: Strongly Coupled Atoms 
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• Tuneable coupling 
(Feshbach resonance) 

• Weak coupling:     
No momentum anisotropy 

• Strong coupling:         
Collective elliptic flow  

Cold atomic gas (6Li, T = 10-6 K) 

O’ Hara et. al 

Science 298 (2002) 5601 

Time after releasing 

atoms from trap 



Fourier Expansion 
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Fourier expansion of the particle distribution with 
respect to the reaction plane (ϕ  = ϕparticle - ϕRP) 

space anisotropy momentum anisotropy 

reaction plane (RP) 

v1: Magnitude of directed flow (vanishes at mid-rapidity) 

v2: Magnitude of elliptic flow 

d2N

dfdpT
= N0 1 + 2v1 cosf + 2v2 cosf + ...( )



Integrated Elliptic Flow 
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Increasing elliptic flow from SPS via RHIC to LHC 

 

 

Phys. Rev. Lett. 105, 252302 (2010) 



Centrality Dependence 
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Largest elliptic flow for (semi-)peripheral collisions 

Central collisions have small initial anisotropy 

 

 

Phys. Rev. Lett. 105, 252302 (2010) 



Elliptic Flow 

v2(pT) similar at STAR / RHIC and ALICE / LHC 
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Phys. Rev. Lett. 105, 252302 (2010) 



Identified Particle v2 at RHIC 
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• v2(pT) driven by radial and elliptic flow 
• kinetic transverse energy KET = mT –m removes mass bias 
• perfect constituent quark scaling (NCQ) 



Identified particle v2 at LHC 
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NCQ scaling 
only 
approximate 
at LHC 

 

Concidence at 
RHIC? 

arXiv:1405.4632 [nucl-ex] 



Comparison with Hydro Models 
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VISHNU: hydro + 
hadronic cascade 

 

• good agreement 
for π, K, φ 

• disagreement for 
p, Λ, Ξ 

 

Precision data and 
models needed! 
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COMPARISON TO HYDRO MODELS 

Heavy Ion Forum | 23.01.2015 | Michael Weber (CERN) 13 

Compare to hydrodynamic 
calculations  

• Proton v2 underestimated 
(i.e. extra push expected in 

hydro) but Λ v2 

overestimated (i.e. less 

push expected in hydro) 

• Mass ordering not 
preserved in VISHNU due 

to the hadronic cascade 

H. Song, S. Bass and U. Heinz 
Phys. Rev. C89, (2014) 034910 

arXiv:1405.4632 [nucl-ex] 



Hard Processes – Jets 

HEPPW - 11 Feb 2015 Tom Dietel 22 

Parton collisions (q-q, q-g, g-g) 
• small cross section for high momentum transfer →high pT partons  
Fragmentation 
• bunches of hadrons from  

parton → jet of particles 



Jets Quenching 
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• hard production process 

– well understood in pQCD 

• propagation in medium 

– gluon-Bremsstrahlung 

– collisions with partons 

– energy loss – „jet quenching“ 

• jet modifications carry 
information about parton-
medium interaction 
→ probe of the medium 

 

 

 

 



Jets in Heavy Ion Collisions 
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High pT Hadron Suppression 
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Nuclear Modification 
Factor 

– ratio of single particle 
production in AA and 
pp collisions 

– normalized with Ncoll: 
number of nucleon-
nucleon collisions 

		

R
AA

=
1

N
coll

dN
AA
/dhdp

T

dN
pp
/dhdp

T

pp × Ncoll 



RAA by STAR @ RHIC 
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• no modification in 
peripheral 
collisions 

• strong suppression 
(factor 5) in central 
collisions 

• smooth transition 
from peripheral to 
central 

 

consistent with 
parton energy loss 

 



RAA by CMS 
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• di-jets in pp are created (almost) balanced 
• energy loss of one jet can lead to momentum 

imbalance 
• study via di-jet imbalace: 

Asymmetric Di-Jets 

		

A
j
=
p
T ,1

- p
T ,2

p
T ,1

+ p
T ,2
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• largest asymmetry in central AA 
• evidence for quenching of at least one jet 

Di-Jet Imbalance 



Heavy Quarks in the QGP 
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What is the mass dependence 
of jet quenching? 

Do heavy quarks (c,b) 
flow with the QGP? 



D-Meson Nuclear Modification Factor 
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D meson RAA (0.3 for central collisions) slightly higher 
than for charged hadrons (0.15) 
→ considerable energy loss 
 



D-Meson Anisotropy 
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significant anisotropy! 

→ heavy charm quarks participate in hydro expansion 



Model Comparison 
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Extensive model comparison 
• no simultaneous description of RAA and v2 

• theoretical and experimental improvements necessary! 



Thermal Photons 
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Planck’s law and approximation for high photon 
energies 
 
 
• measure temperature via thermal photons 
• in analogy to IR thermometer and thermal imaging 
• complicated by expansion of source 
 
 
 

A"Large"Ion"Collider"Experiment

Workshop on Discovery Physics at the LHC | December 5, 2014 | Klaus Reygers

The Role of Direct Photons and High-pT Particles: 

Access to the Early Stage of the Medium Evolution

■ High pT particle production and jets

‣ Energy loss of quarks and gluons in the medium 

characterizes the medium

‣ Results in suppressed particle production at high pT 

■ Direct Photons

‣ Escape the medium unscathed  
(mean free path λ  ≈  500 fm)

‣ High pT (> ~ 6 GeV/c): 
Absence of suppression for prompt (pQCD) photons 

→ Confirms parton energy loss picture

‣ Low pT (< ~ 4 GeV/c)

Contributions from all stages (unlike hadrons)

Test of space-time evolution

Access to initial temperature of the QGP (?) 
[via comparison to hydro models]

4
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Photons from Hard Processes 

• creation in hard initial scatterings: 
same for pp, pA, AA 

• photons escape QGP without 
interaction 

• ideal reference for hard processes: 
comparison of jets and photons 
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Good invariant mass resolution 
even in Pb-Pb collisions 

HEPPW - 11 Feb 2015 



Isolated Photon RAA by CMS 
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unmodified 
photon production 
at high pT  

• prompt photons 

• hadron 
suppression is 
final state effect 
→ energy loss 
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Photons at low pT: Conversions 
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Photon conversions 
 γ → e+e- 
in detector material 
• low conversion 

probability≈8.5% 
 
π0,η reconstruction  
with 2 conversions 
• low efficiency 
• good 

momentum 
resolution at  
low pT 

 
 



Direct Photon Measurement 
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Inclusive photons 
Nincl = Ndirect + Ndecay 

 
Need to separate signal from 
background 

decay photons: π0,η → γγ 
 
Statistical separation 

Ndirect = Nincl – Ndecay 

• problem:  
– small signal 
– large uncertainties 

• trick 
– measurement via Nincl / 

Ndecay  
– cancellation of 

uncertainties 
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The Puzzle Actually Started at RHIC: 

Large Inverse Slope Parameter ...

■ Exponential shape of photon excess 
(consistent with thermal)

‣ Inverse slope (for 0-20%): 
221 ± 19stat ± 19syst MeV

‣ Ti from hydro: 300 ... 600 MeV

■ Hydro models below data

25

p+p

y
ie

ld

Au+Au
min. bias

√ sNN = 200 GeV

PHENIX:

PRL, 104, 132301 (2010); PRC, 81, 034911 (2010)  
and also arXiv:1405.3940 

NLO"W."Vogelsang

C. Shen, U. Heinz, J.-F. Paquet, C. Gale,  
PRC 89 (2014) 4, 044910excess over 

scaled pp spectrum

Direct Photon Spectra 
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high pT: prompt (NLO) photons 
low pT: direct photon excess, exponential slope 
• slope parameter: 221 ± 28 MeV (PHENIX), 304 ± 51 MeV (ALICE 
• thermal photons? 



Comparison with Theory 
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disagreement between theory and experiment 



Photon v2 
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Flow depends on photon 
source: 
• thermal: emitted by 

flowing medium 
• prompt: isotropic 
• decay photons: follows 

from pion flow 
 
What do we expect? 
• early emission  

→ high temperature 
→ small anisotropy 

• late emission 
→ low temperature 
→ large anisotropy 



Direct Photon Anisotropy 
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Large flow signal, not reproduced by models 
Do we understand photon production? 

A"Large"Ion"Collider"Experiment

Workshop on Discovery Physics at the LHC | December 5, 2014 | Klaus Reygers

... and Large Direct Photon v2 for pT < 3 GeV/c

■ PHENIX: Data a challenge to theory

■ Charles Gale (theorist): 
„Theory a challenge to the data“ 

■ Direct Photon puzzle: 
Large direct photon v2 for 
1 < pT < 3 GeV/c challenges

‣ the standard model of the space-time 

evolution of a heavy-ion collision

‣ and/or the currently used photon 

emission rates for the QGP and the 

hadron gas

26

from"E."Kistenev,"Quark"MaVer"2011

PHENIX,"Phys.Rev.LeV.,"109,"122302"(2012)

PRL 109, 122302 (2012) 



Summary & Outlook 
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Quark-Gluon Plasma established 
• flow, jet-quenching… 

Precision measurements are coming 
• heavy quarks, photons… 


