Experimental Heavy-Ion Physics

High Energy Particle Physics Workshop 2015 University of the Witwatersrand, Johannesburg

Tom Dietel – University of Cape Town

Outline

- Quark-Gluon Plasma and Heavy-Ion Collisions
- Flow and Collectivity
- Jet Quenching
- Heavy-Flavor Production
- Photons

Quark-Gluon Plasma

Compression

 reduce distance between nucleons

Pressure

Heating

Heat (creates pions)

- thermally create pions
- fill space between nucleons

Quark-Gluon

Plasma

hadrons overlap

- quarks roam freely over large volume (deconfinement)
- Quark-Gluon Plasma

Phase Diagram of Nuclear Matter

High density or high temperature → QGP

 phase transition at 170 MeV ≈ 2 trillion Kelvin

Accessible with accelerators: RHIC, LHC

Heavy-Ion Collisions

Collisions of Heavy Nuclei

• Pb-Pb @ √s_{NN} = 2.76 TeV

Quark-Gluon Plasma

- deconfined phase of quasi-free quarks and gluons
- LHC–highest energy HI collisions
 - hottest and longest lived QGP
 - ideal environment

Hadronisation

- fragmentation and quark coalescence produce hadrons
- formed after end of QGP phase
- thousands of particles

Photons

- no final state interaction
- direct signal from all phases of collision

The Little Bang

Relativistic Heavy Ion Collider

Probing the QGP

scattering experiments

- external illumination
- not possible

bulk: products from the medium

- QGP expands, cools down, hadronises
- particle species, spectra, flow

hard probes

- production in collisions
- rare \rightarrow traceable
- interaction with medium
- energetic quarks → jets, quarkonia

Centrality

central collisions: small impact parameter, many participants, many collisions between participants

peripheral collisions: large impact parameter, few participants, mostly spectators

system size

- b: impact parameter
- N_{part}: number of participants
- N_{coll}: number of nucleon-nucleon collision
- percentile of total cross section, e.g. 0-5% most central collisions

Relativistic Hydrodynamics

-8 -4 -2

2

8.0 fm/c ($\epsilon_x = 0.003, \epsilon_p = 0.123$)

Initial Conditions

- geometry and density in collision region
- Glauber vs. Gluon Saturation (e.g Color-Glass Condensate CGC)
- thermalization time T0

Medium Properties

- equation of state (EOS)
 - QGP or hadron gas
- viscosity η
- mean free path λ

Relativistic Euler Equation

 evolution of density and motion with time

-2

5.6 fm/c ($\epsilon_r = 0.067, \epsilon_n = 0.147$)

Collectivity

- Radial flow
 - Only type of transverse flow that occurs also at impact parameter b = 0
 - Influences the shape of $p_{\rm T}$ spectra (transverse expansion)
- Elliptic flow
 - Caused by anisotropy in overlap region for $b \neq 0$ (pressure gradient)
 - Needs early thermalization
- Directed flow
 - Built up during pre-equilibrium phase
 - Decreases with increasing CMS energy

Elliptic Flow

- Anisotropy (almond shape) in the overlap region translates in anisotropy in the momentum distribution
- Caused by different pressure gradients in and out of the reaction plane

$$\frac{\mathrm{d}P_x}{\mathrm{d}x} > \frac{\mathrm{d}P_y}{\mathrm{d}y}$$

- Needs:
 - Early thermalisation
 - Strong coupling

Analogy: Strongly Coupled Atoms

Cold atomic gas (⁶Li, $T = 10^{-6}$ K)

- Tuneable coupling (Feshbach resonance)
- Weak coupling: No momentum anisotropy
- Strong coupling: Collective elliptic flow

Fourier Expansion

Fourier expansion of the particle distribution with respect to the reaction plane ($\phi = \phi_{\text{particle}} - \phi_{\text{RP}}$)

$$\frac{d^2 N}{df dp_T} = N_0 (1 + 2v_1 \cos f + 2v_2 \cos f + ...)$$

 v_1 : Magnitude of directed flow (vanishes at mid-rapidity) v_2 : Magnitude of elliptic flow

Integrated Elliptic Flow

Phys. Rev. Lett. 105, 252302 (2010)

Centrality Dependence

Largest elliptic flow for (semi-)peripheral collisions Central collisions have small initial anisotropy

Elliptic Flow

Phys. Rev. Lett. 105, 252302 (2010)

ALI-PUB-50326

 $v_2(p_{\rm T})$ similar at STAR / RHIC and ALICE / LHC

Identified Particle v2 at RHIC

- v2(pT) driven by radial and elliptic flow
- kinetic transverse energy $KE_T = m_T m$ removes mass bias
- perfect constituent quark scaling (NCQ)

Identified particle v₂ at LHC

arXiv:1405.4632 [nucl-ex]

NCQ scaling only approximate at LHC

Concidence at RHIC?

Comparison with Hydro Models

arXiv:1405.4632 [nucl-ex]

VISHNU: hydro + hadronic cascade

- good agreement
 for π, K, φ
- disagreement for p, Λ, Ξ

Precision data and models needed!

Hard Processes – Jets

Parton collisions (q-q, q-g, g-g)

- small cross section for high momentum transfer \rightarrow high p_T partons Fragmentation
- bunches of hadrons from parton → jet of particles

Jets Quenching

- hard production process
 well understood in pQCD
- propagation in medium
 - gluon-Bremsstrahlung
 - collisions with partons
 - energy loss "jet quenching"
- jet modifications carry information about partonmedium interaction
 → probe of the medium

Jets in Heavy Ion Collisions

High p_T Hadron Suppression

Nuclear Modification Factor

- ratio of *single* particle production in AA and pp collisions
- normalized with N_{coll}: number of nucleonnucleon collisions

$$R_{AA} = \frac{1}{N_{coll}} \frac{dN_{AA} / dh dp_{T}}{dN_{pp} / dh dp_{T}}$$

R_{AA} by STAR @ RHIC

- no modification in peripheral collisions
- strong suppression (factor 5) in central collisions
- smooth transition from peripheral to central

consistent with parton energy loss

R_{AA} by CMS

Asymmetric Di-Jets

- di-jets in pp are created (almost) balanced
- energy loss of one jet can lead to momentum imbalance
- study via di-jet imbalace:

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Di-Jet Imbalance

- largest asymmetry in central AA
- evidence for quenching of at least one jet

Heavy Quarks in the QGP

What is the mass dependence of jet quenching?

Do heavy quarks (c,b) flow with the QGP?

D-Meson Nuclear Modification Factor

D meson R_{AA} (0.3 for central collisions) slightly higher than for charged hadrons (0.15)

 \rightarrow considerable energy loss

D-Meson Anisotropy

significant anisotropy!

 \rightarrow heavy charm quarks participate in hydro expansion

Model Comparison

Extensive model comparison

- no simultaneous description of R_{AA} and v₂
- theoretical and experimental improvements necessary!

Tom Dietel

Planck's law and approximation for high photon energies

$$I \sim E_{\gamma}^{3} \frac{1}{e^{E_{\gamma}/k_{B}^{T}} - 1} \xrightarrow{E_{\gamma} \gg k_{B}^{T}} I \sim e^{-E_{\gamma}/k_{B}^{T}}$$

- measure temperature via thermal photons
- in analogy to IR thermometer and thermal imaging
- complicated by expansion of source

Thermal Photons

HEPPW - 11 Feb 2015

Photons from Hard Processes

Background: Meson Decays

Isolated Photon R_{AA} by CMS

unmodified photon production at high p_T

- prompt photons
- hadron
 suppression is
 final state effect
 → energy loss

Photons at low p_T: Conversions

Photon conversions $\gamma \rightarrow e^+e^$ in detector material

 low conversion probability≈8.5%

 π^0 , η reconstruction with 2 conversions

- low efficiency
- good momentum resolution at low p_T

Direct Photon Measurement

Inclusive photons $N_{\text{incl}} = N_{\text{direct}} + N_{\text{decay}}$

Need to separate signal from background decay photons: $\pi^0, \eta \rightarrow \gamma \gamma$

Statistical separation

$$N_{\text{direct}} = N_{\text{incl}} - N_{\text{decay}}$$

- problem:
 - small signal
 - large uncertainties
- trick
 - measurement via N_{incl} / N_{decay}
 - cancéllation of uncertainties

Direct Photon Spectra

low p_T: direct photon excess, exponential slope

- slope parameter: 221 ± 28 MeV (PHENIX), 304 ± 51 MeV (ALICE
- thermal photons?

Comparison with Theory

disagreement between theory and experiment

Photon v₂

Flow depends on photon source:

- thermal: emitted by flowing medium
- prompt: isotropic
- decay photons: follows from pion flow

What do we expect?

- early emission
 → high temperature
 → small anisotropy
- late emission
 → low temperature
 → large anisotropy

Direct Photon Anisotropy

Large flow signal, not reproduced by models Do we understand photon production?

Summary & Outlook

Quark-Gluon Plasma established

• flow, jet-quenching...

Precision measurements are comingheavy quarks, photons...