Using a Classical Gluon Cascade to study the Equilibration of a
Gluon-Plasma

Luke McConnell
Supervised by: Prof A. Peshier

University of Cape Town

Luke McConnell

a Classical Gluon Cascade to study the Equilibration of a Gluon-Plasma



Background

Describing States of Matter

Matter in thermal equilibrium
A P}\m& SPWL Evah\u‘gv\

State of matter described Y
by T, p, and V. 7%
e.g. For ideal gas: pV = Nkg T p s

)

Matter NOT in thermal equilibrium

No definition of T and p. Need to go back to the microscopic picture using the
relativistic Boltzmann equation

(% + %v) f(x,p) = C[f],

where f(x, p) is particle density in phase space, C[f] is the collision term.
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Background cont.

Solving the Boltzmann Equation

AN T .
Boltzmann Eq. for f(x,p) = GrPadas ot the individual particles.
No general analytic solution - solve numerically

Monte Carlo cascade simulation
The idea is to solve the Boltzmann equation by deriving the collision probability
directly from the collision term.
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Background cont.
Obtain the Collision Probability

Collision rate per unit phase space for incoming particles p; and p, with A3p;

and A3ps:
ANy 1 Adp AN;
=l - = 2 gfs f=— -3
At AxAip 2B (2m)2E; c b e AAT
o is cross-section
Ncoll At
Pco =l A = Ve A2
= AN AN, = ) Ay

With pair’s relative velocity v, = ﬁ
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Cross-Section
For Elastic gg — gg Collisions

do®878  9ma, ( tu  su st)
dt 2s2

Mandelstam t is related to s via t = —5(1 — cos¢’), with 6’ being the
scattering angle in CoM.

Small angle scatterings favoured
= small t
Cross-section approximated as:

do __ 9mas
dt 2
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Cross-Section cont.

Infrared Divergence

Attempting to integrate to find the total cross-section gives

0
a(s):/ gtgsdt:oo

—s

Example of infrared divergence.

b ( (7 ) e
VL\ Screening due to —\
i d the Debye mass X‘/
°
(
)

Need to regularise the cross-section R
using screening effects due to the g —
Debye mass N -
55, U
’ ‘ I~

s/ & ! /g (o
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Cross-section cont.

Include Screening Effects

Include debye

o(s)
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Infrared -
Divergence —=

mass and integrate

Regularised Finite Cross-Section
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How do the gluons scatter?

Lorentz boost into CoM (easiest). Scatter momenta given by scattering angles
in CoM

Ial

pfscmered = p! (cos 0’8’ 4 sin@' sin ¢’y + siné’ cos (;5/2/)

Afterwards, inverse boost back to Lab frame.

Luke McConnell

assical Gluon Cascade to study the Equilibration of a Gluon-Plasma



Simulation: Part 1

Overview

Study the thermalisation of a
gluon-plasma in homogeneous box.

Start from isotropic momentum
shell: fini(p) = ad(Q — p)
where the thickness of the
shells is the coarse graining.
We fix the equilibrium
temperature through the
parameters Q and a.
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Simulation: Part 1
Finding the Entropy

We have f(p)

Group the particles according to their
energy. For a group j: G;j is number of
states and N is number of particles.
Then off-equilibrium

S=> (N;inG —In N}
J

coarse graining dp
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Simulation: Part 1 cont.
Time Evolution of the Entropy
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Simulation: Part 1 cont.

Thermalisation Time 7

T is found by fitting modelling the change in entropy as an exponential decay.
It is found that it decreases for increasing Nparticies and Teq. From cross-section
we guess (naively) 7 o< 1/as.
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Simulation: Part 2

Overview

Partition the volume into cells.

Allow streaming in z-direction.

Linearly increasing temp. gradient.

Num. gluons and momenta determined by T.
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Simulation: Part 2 cont.
Particle Density per Cell
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Free-Streaming With Collisions
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Simulation: Part 2
Find Flow-Velocity

Find u* from E-M tensor

where € is eigenvalue,
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Simulation: Part 2 cont.
Flow-Velocity in Each Cell

Free-Streaming With Collisions
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Simulation: Part 2 cont.

Need new groups

Now f(p, p*)
with dp” and dp"' are coarse grainings.
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Time (fm)

Free-Streaming
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Thank you for listening

This is a Camel.
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