MEASUREMENT OF THE HIGGS BOSON TRANSVERSE MOMENTUM WITH THE ATLAS DETECTOR

Robert Reed – robert.reed@cern.ch

and the second with the second

Deep Inelastic Scattering

LHC 27 km

100

HEPP-2015

Robert Graham Reed

HEPP-2015

The second second

LICI

FUN FACT: Ex-particle-physicists make the worst biologists.

http://abstrusegoose.com/156

Robert Graham Reed

HEPP-2015

DISCOVERY OF THE HIGGS

What is inside this packet of protons?

antiquark

quark

valence quarks

u

glueballs

u

virtual quarks

Robert Graham Reed

HIGGS DECAY CHANNELS

□ H -> WW

- Large Signal
- Large background
- Neutrinos
- □ H -> ZZ
 - Neutrinos
 - 4l = Clean signal
 - Rare
- □ <u>**H**</u> -> γγ
 - Clean signal
 - Significant background
 - Probes production mechanism well
 - Simpler final state

MEASURING THE HIGGS CROSS SECTIONS

HEPP-2015

- What do we count?
- $= \text{Event Selection (Higgs -> }\gamma\gamma)$
 - Events must have 1 collision vertex
 with three inner tracks P_T > 400 MeV
 - Photon clusters must have $P_T > 25 \text{ GeV}$ and $|\eta| < 2.37$
 - Two highest photons selected
 - $-105 \le m_{\gamma\gamma} < 160 \text{ GeV}$
 - Leading (subleading) must satisfy $p_T / m_{\gamma\gamma} > 0.35$ (0.25)
- veto electrons/Muons
- Jets must be separated from
 photons by $\Delta R > 0.4$

 $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

Counting Game

Pseudorapidity Range

P_T DISTRIBUTIONS ($\gamma\gamma \& 4l$)

Insights into the Higgs boson kinematics.

Probes perturbative-QCD of gg fusion.

HEPP-2015

Robert Graham Reed

18

P_T DISTRIBUTIONS

- How significant of an excess?
 - Using Kolmogorov Test

KOLMOGOROV - SMIRNOV TEST

K-S test statistic (two sample) defined by:

HEPP-2015

KOLMOGOROV - SMIRNOV RESULTS

Total KS value is a product of all probablities

 $KS_{total} = 0.00563 \sim 2.8 - 3 \sigma$

Robert Graham Reed

SUMMARY AND PLANS

- ^{\square} Seeing an **excess** in the Higgs P_T spectrum
 - Statistical fluctuation? (Possibly, 2015 data taking)
 - Some new BSM physics? (Possibly, see talk by Stefan)
- Kolmogorov Test
 - Product showing around 3σ significance
- Issues with the KS Test
 - Weak for small bin number (such as this case)
 - Not ideal for models based on data (Likelihood fits etc)
- Use a likelihood ratio test
 - Need the actual data sets
 - Need to redefine the test to use SM as null hypothesis & use with a different model (Dark Matter etc)

HEPP-2015

Questions?

Robert Reed – robert.reed@cern.ch

No frogs were harmed in the making of this presentation

Courant