Measurement of Higgs properties in diphoton channel in ATLAS

<u>Xifeng RUAN</u> University of the Witwatersrand Johannesburg, South Africa On behalf ATLAS group

Introduction

Higgs discovered in 2012

More work? Measurements on: Coupling Mass Differential xsection Fiducial xsection In two photon final state

LHC and ATLAS detector

The mass spectrum

1.

Find Higgs?

- 1) At least two photons
- 2) well identified and isolated
- 3) Invariant mass peak!

4

OHN MARTIN

What can a mass peak do? a) compare to the MonteCarlo Event yields—Coupling b) Measure the position of mass peak c) Measure event yields in a dedicated bins/phase space differential measurement

We have the invariant mass spectrum in many categories instead an inclusive one

Dedicated for different physics region, VBF enriched, VH enriched, ttH enriched.

Bring more complicity

W,Z

W.Z

W,Z www.Z

HO

MultiVariate Analysis in Vector Boson Fusion categories

Higgs mass and coupling measurement

Fit all categories simultaneously, immediately we have:

 $\mu_{ggF} = 1.32 \pm 0.32 \text{ (stat.)} + 0.13 \text{ (syst.)} + 0.19 \text{ (theory)} Signal strength of different$ $= 1.32 \pm 0.38$. $\mu_{\rm VBF} = 0.8 \pm 0.7 \text{ (stat.)} {}^{+0.2}_{-0.1} \text{ (syst.)} {}^{+0.2}_{-0.3} \text{ (theory)}$ $= 0.8 \pm 0.7$. $\mu_{WH} = 1.0 \pm 1.5 \text{ (stat.)} \stackrel{+0.3}{_{-0.1}} \text{ (syst.)} \stackrel{+0.2}{_{-0.1}} \text{ (theory)}$ $= 1.0 \pm 1.6$. $\mu_{ZH} = 0.1 \stackrel{+3.6}{_{-0.1}} (\text{stat.}) \stackrel{+0.7}{_{-0.0}} (\text{syst.}) \stackrel{+0.1}{_{-0.0}} (\text{theory})$ $= 0.1 \stackrel{+3.7}{_{-0.1}}$ $\mu_{t\bar{t}H} = 1.6 \stackrel{+2.6}{_{-1.8}} (\text{stat.}) \stackrel{+0.6}{_{-0.4}} (\text{syst.}) \stackrel{+0.5}{_{-0.2}} (\text{theory})$ = 1.6 + 2.7 - 1.8

production mode are measured

The Higgs mass is measured as well, using data in Higgs to diphoton and four-lepton channel.

Channel	Mass measurement [GeV]		
$H \rightarrow \gamma \gamma$	$125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (syst)} = 125.98 \pm 0.50$		
$H \rightarrow ZZ^* \rightarrow 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.06 \text{ (syst)} = 124.51 \pm 0.52$		
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} = 125.36 \pm 0.41$		

- Steps:
 - I. Measure the Higgs boson yields in differential bins by fitting the data invariant mass spectrum.
 - Now we have the Higgs yields distribution
 - II. use bin by bin method to unfold the detector effect.
 - This is to remove detector effect, reconstruction level->particle level
 - III. Divided by the luminosity, convert event yields to cross section
 - Now ready to compare with the theoretical prediction

NP Corr.

Parton-level Fiducial

Parton-level

Fid. Corr.

Binning and variables

Differential cross section

Fiducial cross section

11

Fiducial volume

2 photons p_{Tv1}(p_{Tv2})/m_{vv}>0.35(0.25)105<myy<160GeV

Fiducial cross section results

Fiducial region	Measured cross section (fb)		
Baseline	$43.2 \pm 9.4 (\text{stat.}) {}^{+3.2}_{-2.9} (\text{syst.}) \pm 1.2 (\text{lumi})$		
$N_{ m jets} \ge 1$	$21.5 \pm 5.3 (\text{stat.}) {}^{+2.4}_{-2.2} (\text{syst.}) \pm 0.6 (\text{lumi})$		
$N_{ m jets} \geq 2$	$9.2 \pm 2.8 (\text{stat.})^{+1.3}_{-1.2} (\text{syst.}) \pm 0.3 (\text{lumi})$		
$N_{ m jets} \geq 3$	$4.0 \pm 1.3 (\text{stat.}) \pm 0.7 (\text{syst.}) \pm 0.1 (\text{lumi})$		
VBF-enhanced	$1.68 \pm 0.58 (\text{stat.})^{+0.24}_{-0.25} (\text{syst.}) \pm 0.05 (\text{lumi})$		
$N_{\rm leptons} \ge 1$	< 0.80		
$E_{\mathrm{T}}^{\mathrm{miss}} > 80~\mathrm{GeV}$	< 0.74		

Fiducial region	Theoretical prediction (fb)	Source		
Baseline	30.5 ± 3.3	LHC-XS $[57] + XH$		
	$34.1_{-3.5}^{+3.6}$	STWZ $[99] + XH$		
	$27.2^{+3.6}_{-3.2}$	Hres $[103] + XH$		
$N_{\rm jets} \ge 1$	13.8 ± 1.7	BLPTW $[106] + XH$		
	$11.7^{+2.0}_{-2.4}$	JetVHeto $[107] + XH$		
	$9.3^{+1.8}_{-1.2}$	MINLO $HJ + XH$		
$N_{ m jets} \geq 2$	5.65 ± 0.87	BLPTW + XH		
	$3.99^{+0.56}_{-0.59}$	MINLO $HJJ + XH$		
$N_{ m jets} \geq 3$	0.94 ± 0.15	Minlo $HJJ + XH$		
VBF-enhanced	0.87 ± 0.08	Minlo $HJJ + XH$		
$N_{\rm leptons} \ge 1$	0.27 ± 0.02	XH		
$E_{\rm T}^{\rm miss} > 80 { m ~GeV}$	0.14 ± 0.01	XH		

Conclusion

- The measurement on Higgs boson properties benefits from the two photon invariant mass peak.
- The 2011 and 2012 data taking in ATLAS provided fruitful discoveries and measurement, including the coupling, mass, differential and fiducial cross section measurement.
- Looking forward to 2015 data taking and any possible new physics.

Spin analysis

Nominal MC samples

Process	Generator	Showering	PDF set	Order of calculation	$\sigma[\mathrm{pb}]$	$\sigma[\mathrm{pb}]$
					$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
ggF	Powheg-box	Pythia8	CT10	NNLO(QCD)+NLO(EW)	15.04	19.15
VBF	Powheg-box	Pythia8	CT10	NLO(QCD+EW)+app.NNLO(QCD)	1.22	1.57
WH	Pythia8	Pythia8	CTEQ6L1	NNLO(QCD)+NLO(EW)	0.57	0.70
ZH	Pythia8	Pythia8	CTEQ6L1	NNLO(QCD)+NLO(EW)	0.33	0.41
$t\bar{t}H$	POWHEL	Pythia8	CT10	NLO(QCD)	0.09	0.13
tHbj	MadGraph	PYTHIA8	CT10	NLO(QCD)	0.01	0.02
tHW	MadGraph5_aMC@NLO	HERWIG++	CT10	NLO(QCD)	< 0.01	< 0.01
$b\bar{b}H$	-	-	-	5FS(NNLO) + 4FS(NLO)	0.15	0.20

Reference

- Fiducial& differential xsection http://arxiv.org/abs/1407.4222
- Mass: http://arxiv.org/abs/1406.3827
- Coupling: http://arxiv.org/abs/1408.7084