Single Top Quark and Higgs-Boson Production in ep collisions

Mukesh Kumar

University of the Witwatersrand Johannesburg, South Africa

February 11-13, 2015 HEPPW 2015

arXiv: 1307.1688, 1203.6285, 1502.xxxxx

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Single Top at LHeC: *Wtb* vertex

Single Top at LHeC: *Wtb* vertex

Single Top at LHeC: *Wtb* vertex

Lagrangian & Processes:

- $\mathcal{L}_{Wtb} = \frac{g}{\sqrt{2}} \left[W_{\mu} \bar{t} \gamma^{\mu} (V_{tb} f_{1}^{L} P_{L} + f_{1}^{R} P_{R}) b \frac{1}{2m_{W}} W_{\mu\nu} \bar{t} \sigma^{\mu\nu} (f_{2}^{L} P_{L} + f_{2}^{R} P_{R}) b \right] + \text{h.c.};$ $\text{where } f_{1}^{L} \equiv 1 + \Delta f_{1}^{L}, W_{\mu\nu} = D_{\mu} W_{\nu} D_{\nu} W_{\mu}, D_{\mu} = \partial_{\mu} ieA_{\mu},$ $\sigma^{\mu\nu} = i/2 \left(\gamma^{\mu} \gamma^{\nu} \gamma^{\nu} \gamma^{\mu} \right).$
- ► In SM $|V_{tb}|f_1^L \approx 1$ and at tree level $\Delta f_1^L, f_1^R, f_2^L \& f_2^R$ vanishes.
- CP-conserving → (can take) real couplings
- ► CP-violation → complex couplings [arXiv:06050190]

•
$$f_1^R = 0.1e^{i\phi_{f_1^R}}, f_2^L = 0.1e^{i\phi_{f_2^L}}, f_2^R = 0.1e^{i\phi_{f_2^L}}$$

- ▶ f_1^R, f_2^L not affected but in case of f_2^R phase is dominant → Angular asymmetries are not sufficient
- Other observable: Spin Asymmetry, triple product asymmetries in dileptonic channel in $t\bar{t}$ production
- Processes: $e^-p \to \overline{t}\nu_e, \overline{t} \to W^-\overline{b}$
 - ▶ Helicity fractions: $\mathcal{F}_0 = N_0/N$, $\mathcal{F}_+ = N_+/N$, $\mathcal{F}_- = N_-/N$, $N = N_0 + N_+ + N_-$
 - ▶ Hadronic decay: $W^- \rightarrow jj$
 - Leptonic decay: $W^- \rightarrow l\nu_l, l = e, \mu$

Constrain on f_i 's

- ▶ Assuming only one anomalous coupling to be non-zero at a time $-0.13 \le |V_{tb}|f_1^L \le 0.03, -0.0007 \le f_1^R \le 0.0025, -0.0015 \le f_2^L \le 0.0004,$ $-0.15 \le f_2^R \le 0.57$ from *B* decays [Phys. Rev. D 78, 077501 (2008)]
- ▶ Single top production at DØ assuming $|V_{tb}|f_1^L = 1$, $|f_1^R| \le 0.548$, $|f_2^L| \le 0.224$, $|f_2^R| \le 0.347$ [Phys. Lett. B 713, 165 (2012)]
- ► Associated *tW* production at LHC through γp collision $|f_1^R| \le 0.55$, $|f_2^L| \le 0.22$, $|f_2^R| \le 0.35$ [Phys. Rev. D 86, 074026 (2012)]
- ► ATLAS: asymmetries associated through angular distribution $\operatorname{Re}(f_1^R) \in$ [-0.44,0.48], $\operatorname{Re}(f_2^L) \in$ [-0.24,0.21], $\operatorname{Re}(f_2^R) \in$ [-0.49,0.15]. [ATLAS-CONF-2011-037]

Loop Corrections:[arXiv:1308.3652]

• QCD:
$$f_2^R = -6.61 \times 10^{-3}, f_2^L = -1.118 \times 10^{-3} (m_t = 171 \text{ GeV})$$

- EW: $f_2^R = -(1.24 \pm 1.23i) \times 10^{-3}, f_2^L = -(0.102 \pm 0.014i) \times 10^{-3} (m_H = 126 \text{ GeV})$
- ► SM: $f_2^R = -(7.85 \pm 1.23i) \times 10^{-3}, f_2^L = -(1.220 \pm 0.014i) \times 10^{-3}$

$e^-p \rightarrow \bar{t}\nu_e \rightarrow \bar{b}W^-\nu_e \& W^-$ helicity fractions:

$e^-p \rightarrow \bar{t}\nu_e \rightarrow \bar{b}W^-\nu_e \& W^-$ helicity fractions:

$e^-p \rightarrow \bar{t}\nu_e \rightarrow \bar{b}W^-\nu_e \& W^-$ helicity fractions:

Hadronic: $E_e = 60$ GeV, $E_p = 7$ TeV, L = 100 fb⁻¹

No.	Backgr	ound 1	$p_{T_{j,b}} \ge 20 \text{ GeV}$	$\Delta \Phi_{\not\!\!\! E,j} \ge 0.4$	$ m_{j_1 j_2} - m_W \le 22 \mathrm{GeV}$	$\sigma_{\mathrm{eff.}}$
	Proc	ess $ \eta\rangle$	$ j \le 5, \eta_b \le 2.5$	$\Delta \Phi_{E,b} \ge 0.4$		
			$\Delta R_{j,b/j} \ge 0.4$			
			$\not\!\!E_T \ge 25$			
1	$e^- p \rightarrow \nu$	$W^{-}\bar{b}$	7.5×10^{-3}	$6.8 imes 10^{-3}$	4.5×10^{-3}	2.7×10^{-3}
	without ant	i-top line				
2	$e^-p \rightarrow b^-$	$ u_e j j j$	$4.2 imes 10^{0}$	$3.6 imes10^{0}$	$2.4 imes 10^{0}$	7.2×10^{-2}
3	$e^-p \rightarrow b^-$	$\nu_e c j j$	$1.5 imes 10^{0}$	$1.2 imes 10^{0}$	$8.6 imes10^{-1}$	$8.6 imes 10^{-2}$
	& $e^-p \rightarrow$	$\nu_e \overline{c} j j$				
4	$e^-p \rightarrow b$	$\nu_e c \bar{c} j$	5.8×10^{-2}	$5.0 imes 10^{-2}$	$3.2 imes 10^{-2}$	$6.7 imes 10^{-3}$
5	$e^-p \rightarrow b$	$\nu_e b \overline{b} j$	2.5×10^{-2}	$2.2 imes 10^{-2}$	$5.6 imes 10^{-3}$	$1.3 imes 10^{-3}$
6	$e^-p \rightarrow$	$\bar{c}\nu_e$	2.5×10^{-2}	2.2×10^{-2}	1.5×10^{-2}	1.5×10^{-4}
	$(\bar{c} \rightarrow W$	$(7-\bar{s})$				
Even	t Selection	n> 20 C	W Ada	0.4	mul < 22 CoV Fiducia	$\frac{Q}{\sqrt{Q+D}}$
Even	it Selection	$p_{T_{j,b}} \ge 20$ G	$\Delta \Psi_{\overline{\mu},j} \geq 0$	0.4 $m_{j_1j_2} - r$	$ m_W \ge 22 \text{ GeV}$ Fiducial	D = D = D
		$ \eta_j \leq \mathfrak{d}, \eta_b \leq \mathfrak{d}$	$2.5 \Delta \Phi_{\overline{p},b} \geq$	0.4	Efficienc	У
		$\Delta R_{j,b/j} \ge 0$	0.4			
		$\not\!$				
	SM	3.2×10^{4}	2.3×10	0^4 2.1	2×10^4 66.7 %	_
SM-	$+\sum_{i} Bkg_{i}$	6.5×10^{4}	5.0×10	0^4 4.0	0×10^4 61.5 %	
$ V_{tb} $	$\Delta f_{1}^{L} = .5$	7.3×10^4	5.0×10	0^4 5.0	0×10^4 68.0 %	1.92
f	$f_1^R = .5$	4.6×10^{4}	3.2×10	0^4 3.1	2×10^4 69.7 %	1.43
f	$f_2^L = .5$	4.9×10^{4}	3.6×10	0^4 3.	6×10^4 73.2 %	1.55
f_2^1	$\bar{L} =5$	3.4×10^{4}	2.3×10	0^4 2.3	3×10^4 69.6 %	1.40
f	$f_2^R = .5$	5.7×10^4	4.1×10	0^4 4.	1×10^4 72.3 %	1.69

Leptonic: $E_e = 60$ GeV, $E_p = 7$ TeV, L = 100 fb⁻¹

No.	Background	$p_{T_{j,b,l}} \ge 20 \text{ GeV}$	$AR_{j,b/j} \ge 0.4, \not\!\!E_T \ge 25$	$\Delta \Phi_{E,j} \ge 0.4$	$\sigma_{\rm eff.}$
	Process	$ \eta_j \ge$	$ 5, \eta_{b,l} \ge 2.5$	$\Delta \Phi_{E,b} \ge 0.4$	
				$\Delta \Phi_{E,l} \ge 0.4$	
1	$e^- p \rightarrow l^- \bar{\nu}_l \nu_e j$	1	$.5 \times 10^{-1}$	1.4×10^{-1}	$1.4 imes 10^{-3}$
2	$e^- p \rightarrow l^- \bar{\nu}_l \nu_e c$	6	6.6×10^{-3}	$6.1 imes10^{-3}$	$6.1 imes 10^{-4}$
	& $e^- p \rightarrow l^- \bar{\nu}_l \nu_e$	\bar{c}			
3	$e^- p \rightarrow l^- \bar{\nu}_l \nu_e b$	3	3.6×10^{-3}	$3.2 imes 10^{-3}$	$1.9 imes 10^{-3}$
	& $e^- p \rightarrow l^- \bar{\nu}_l \nu_e$	\overline{b}			
	Without top lin	е			
4	$e^-p \rightarrow e^- l^- \bar{\nu}_l c$	1	$.5 \times 10^{-2}$	$6.9 imes10^{-3}$	$6.9 imes 10^{-4}$
5	$e^-p \rightarrow e^-l^- \bar{\nu}_l j$	1	$.2 \times 10^{-1}$	$5.5 imes 10^{-2}$	$5.5 imes 10^{-4}$
Eve	nt Selection	$p_{\rm TT} \ge 20 {\rm GeV}$	$\Delta \Phi_{\rm HI} > 0.4$	Fiducial	$S/\sqrt{S+B}$
1.0	ne beleetion	$ n_i < 5 n_b < 2.5$	$\Delta \Phi_{\overline{\mu},j} \ge 0.1$ $\Delta \Phi_{\overline{\mu},j} \ge 0.4$	Efficiency	270212
		$\Delta R_{i,b/i} > 0.4$	$\Delta \Phi_{\rm Ff,l} \ge 0.4$	Linereney	
		$E_T \ge 25$	$= i \mu, i \leq 0.1$		
	SM	1.2×10^{4}	1.1×10^4	92.0 %	_
\mathbf{SM}	$1+\sum_i Bkg_i$	$1.3 imes 10^4$	$1.2 imes 10^4$	92.0 %	_
V_{tb}	$\Delta f_1^L = .5$	$4.5 imes 10^4$	$2.5 imes 10^4$	92.6~%	1.55
	$f_1^R = .5$	$2.8 imes10^4$	$1.6 imes 10^4$	94.1~%	1.23
	$f_2^L = .5$	$3.1 imes10^4$	$1.7 imes10^4$	89.5 %	1.27
ſ	$f_2^L =5$	$1.8 imes10^4$	$1.0 imes 10^4$	90.9 %	0.95
	$f_2^R = .5$	$3.6 imes10^4$	$2.0 imes 10^4$	90.9 %	1.38

Angular Asymmetries from Histogram:

$$\begin{array}{l} \bullet \quad A_{\theta_{ij}} = \frac{N_{+}^{A}(\cos\theta_{ij}>0) - N_{-}^{A}(\cos\theta_{ij}<0)}{N_{+}^{A}(\cos\theta_{ij}>0) + N_{-}^{A}(\cos\theta_{ij}<0)}, \\ \bullet \quad A_{\Delta\eta_{ij}} = \frac{N_{+}^{A}(\Delta\eta_{ij}>0) - N_{-}^{A}(\Delta\eta_{ij}<0)}{N_{+}^{A}(\Delta\eta_{ij}>0) + N_{-}^{A}(\Delta\eta_{ij}<0)}, \\ \bullet \quad A_{\Delta\Phi_{ij}} = \frac{N_{+}^{A}(\Delta\phi_{ij}>\frac{\pi}{2}) - N_{-}^{A}(\Delta\phi_{ij}<\frac{\pi}{2})}{N_{+}^{A}(\Delta\phi_{ij}>\frac{\pi}{2}) + N_{-}^{A}(\Delta\phi_{ij}<\frac{\pi}{2})}, 0 \le \Delta\phi_{ij} \le \pi. \end{array}$$

where i, j may be any partons (including b), charged lepton or missing energy.

Statistical error in Asymmetry:
$$\sigma_a = \sqrt{\frac{1-a^2}{L \cdot \sigma}}$$
, where
 $a = \frac{N_+^A - N_-^A}{N_+^A + N_-^A}$ and $N = (N_+^A + N_-^A) = L \cdot \sigma$,
 $\sigma \equiv \sigma \left(e^- p \to \overline{t}\nu_e, \overline{t} \to W^- \overline{b}\right)$
 $\times BR \left(W^- \to jj/l^- \nu_l\right)$

Angular Asymmetries from Histogram:

$$\begin{array}{l} \bullet \quad A_{\theta_{ij}} = \frac{N_+^A(\cos\theta_{ij} > 0) - N_-^A(\cos\theta_{ij} < 0)}{N_+^A(\cos\theta_{ij} > 0) + N_-^A(\cos\theta_{ij} < 0)},\\ \bullet \quad A_{\Delta\eta_{ij}} = \frac{N_+^A(\Delta\eta_{ij} > 0) - N_-^A(\Delta\eta_{ij} < 0)}{N_+^A(\Delta\eta_{ij} > 0) + N_-^A(\Delta\eta_{ij} < 0)},\\ \bullet \quad A_{\Delta\Phi_{ij}} = \frac{N_+^A(\Delta\phi_{ij} > \frac{\pi}{2}) - N_-^A(\Delta\phi_{ij} < \frac{\pi}{2})}{N_+^A(\Delta\phi_{ij} > \frac{\pi}{2}) + N_-^A(\Delta\phi_{ij} < \frac{\pi}{2})}, 0 \le \Delta\phi_{ij} \le \pi. \end{array}$$

where i, j may be any partons (including b), charged lepton or missing energy.

► Statistical error in Asymmetry: $\sigma_a = \sqrt{\frac{1-a^2}{L \cdot \sigma}}$, where $a = \frac{N_+^A - N_-^A}{N_+^A + N_-^A}$ and $N = (N_+^A + N_-^A) = L \cdot \sigma$, $\sigma \equiv \sigma (e^- p \to \bar{t}\nu_e, \bar{t} \to W^- \bar{b})$ $\times BR (W^- \to jj/l^- \nu_l)$

Angular Asymmetries from Histogram:

$$\begin{array}{l} \bullet \quad A_{\theta_{ij}} = \frac{N_+^A(\cos\theta_{ij} > 0) - N_-^A(\cos\theta_{ij} < 0)}{N_+^A(\cos\theta_{ij} > 0) + N_-^A(\cos\theta_{ij} < 0)},\\ \bullet \quad A_{\Delta\eta_{ij}} = \frac{N_+^A(\Delta\eta_{ij} > 0) - N_-^A(\Delta\eta_{ij} < 0)}{N_+^A(\Delta\eta_{ij} > 0) + N_-^A(\Delta\eta_{ij} < 0)},\\ \bullet \quad A_{\Delta\Phi_{ij}} = \frac{N_+^A(\Delta\phi_{ij} > \frac{\pi}{2}) - N_-^A(\Delta\phi_{ij} < \frac{\pi}{2})}{N_+^A(\Delta\phi_{ij} > \frac{\pi}{2}) + N_-^A(\Delta\phi_{ij} < \frac{\pi}{2})}, 0 \le \Delta\phi_{ij} \le \pi. \end{array}$$

where i, j may be any partons (including b), charged lepton or missing energy.

► Statistical error in Asymmetry: $\sigma_a = \sqrt{\frac{1-a^2}{L \cdot \sigma}}$, where $a = \frac{N_+^A - N_-^A}{N_+^A + N_-^A}$ and $N = (N_+^A + N_-^A) = L \cdot \sigma$, $\sigma \equiv \sigma (e^- p \to \bar{t}\nu_e, \bar{t} \to W^- \bar{b})$ $\times BR (W^- \to jj/l^- \nu_l)$

Hadronic:

	$A_{\Delta\Phi_{\not \! E_T j_1}}$	$A_{\Delta\Phi_{\vec{E}_T\bar{b}}}$	$A_{\Delta\Phi_{\not \! E_TW^-}}$	$A_{\Delta\Phi_{W^{-}ar{b}}}$	$A_{\theta_{\bar{b}j_1}}$	$A_{\Delta \eta_{bj_1}}$
$SM + \sum_i Bkg$	$_{i}$.532 \pm .003	$.282 \pm .005$	$.503$ \pm $.004$	$.799\pm.003$	$.023\pm.001$	$712 \pm .003$
$f_1^R = +.5$	$.327\pm.004$	$.231\pm.004$	$.564\pm.004$	$.778\pm.003$	$.0005\pm.004$	806 \pm .003
$f_2^L =5$	$.528\pm.004$	$.082\pm.004$	$.716\pm.003$	$.748\pm.003$	196 \pm .004	868 \pm .002
$f_{2}^{L} = +.5$	$.390\pm.005$	$.269 \pm .004$	$.585\pm.004$	$.683 \pm .004$	$.106 \pm .005$	795 \pm .003
$f_2^R = +.5$	$.330\pm.004$	$.363\pm.004$	$.566\pm.003$	$.656\pm.003$	197 \pm .004	$823 \pm .002$

Leptonic:

	$A_{\Delta\Phi_{\not \!\!\! E_T l_1}}$	$A_{\Delta\Phi_{\not \!\! E_T\bar{b}}}$	$A_{\theta_{\overline{b}l_1}}$	$A_{\Delta \eta_{\bar{b}l_1}}$
$\mathrm{SM} + \sum_i \mathrm{Bkg}_i$	$.384 \pm .004$	$.710\pm.003$	$.551 \pm .006$	$765 \pm .007$
$f_1^R = +.5$	$.484 \pm .004$	$.702 \pm .003$	$.332 \pm .006$	$821 \pm .003$
$f_2^L =5$	$.526 \pm .004$	$.620 \pm .003$	$.410 \pm .006$	$831 \pm .002$
$f_2^L = +.5$	$.353 \pm .005$	$.812 \pm .003$	$.392 \pm .007$	$850 \pm .003$
$f_2^R = +.5$	$.424\pm.004$	$.684\pm.003$	$.507 \pm .005$	$809 \pm .003$

Estimators and χ^2 Analysis: Bin Analysis

$$\begin{split} \chi^{2}\left(f_{i},f_{j}\right) &= \sum_{k=1}^{N} \left(\frac{\mathcal{N}_{k}^{\mathrm{SM}+\sum_{i}\mathrm{Bkg}_{i}}-\mathcal{N}_{k}^{\mathrm{th}}\left(f_{i},f_{j}\right)}{\delta\mathcal{N}_{k}^{\mathrm{SM}+\sum_{i}\mathrm{Bkg}_{i}}}\right)^{2},\\ \text{where } \delta\mathcal{N}_{k}^{\mathrm{SM}+\sum_{i}\mathrm{Bkg}_{i}} &= \sqrt{\mathcal{N}_{k}^{\mathrm{SM}+\sum_{i}\mathrm{Bkg}_{i}}\left(1+\delta_{\mathrm{Sys}}^{2}\mathcal{N}_{k}^{\mathrm{SM}+\sum_{i}\mathrm{Bkg}_{i}}\right)} \end{split}$$

Hadronic

900

æ

Estimators and χ^2 Analysis: Error & Correlation

Errors and Correlation matrix:

$$\begin{array}{l} \star \ \chi^2(f_i,f_j) = \chi^2_{\min} + \sum_{i,j} (f_i - \bar{f}_i) \ [V^{-1}]_{ij} \ (f_j - \bar{f}_j), \text{ where} \\ f_i - \bar{f}_i = \pm \Delta f_i = \pm \sqrt{V_{ii}}, \rho_{ij} = V_{ij} / \sqrt{V_{ii} V_{jj}}. \\ \star \ \chi^2_{\text{comb.}} (f_i,f_j) = \sum_{k=1}^n \chi^2_{\min k} + \sum_{k=1}^n \sum_{i,j} (f_i - \bar{f}_i) \ [V^{-1}]_{ij} \ (f_j - \bar{f}_j) \\ |V_{tb}| \ \Delta f_1^L = \pm 3.2 \times 10^{-4} \\ f_1^R = \pm 4.6 \times 10^{-4} \\ f_2^L = \pm 4.2 \times 10^{-4} \\ f_2^R = \pm 2.6 \times 10^{-4} \\ \end{array} \left(\begin{array}{c} 1 \\ -.05 \quad 1 \\ -.04 \quad -.06 \quad 1 \\ -.02 \quad .03 \quad -.04 \quad 1 \end{array} \right) \end{array} \right)$$

Luminosity Error: $L \equiv \beta \overline{L}$, $\beta = 1 \pm \Delta \beta$; $\chi^2_{\text{comb.}}(f_i, f_j) \rightarrow \chi^2_{\text{comb.}}(f_i, f_j, \beta)$

$$\begin{array}{l} \lambda_{\text{comb.}}^{2}(f_{i},f_{j},\beta) = \sum_{k=1}^{n} \chi_{\text{mink}}^{2} + \sum_{k=1}^{n} \sum_{i,j} (f_{i} - \bar{f}_{i}) \left[V^{-1} \right]_{ij} (f_{j} - \bar{f}_{j}) + \left(\frac{\beta_{k} - 1}{\Delta \beta_{k}} \right)^{2} \\ |V_{ib}| \Delta f_{1}^{L} = \pm 5.0 \times 10^{-2} \\ f_{1}^{R} = \pm 4.6 \times 10^{-4} \\ f_{2}^{L} = \pm 4.2 \times 10^{-4} \\ f_{2}^{R} = \pm 2.6 \times 10^{-4} \end{array} \begin{pmatrix} 1 \\ 0 & 1 \\ 0 & -.068 & 1 \\ 0 & .032 & -.041 & 1 \end{pmatrix} \text{ with } \Delta \beta = 10\%.$$

2

Conclusion

- We observe high yields of single anti-top quark production with fiducial effeciency of $\sim 70\%$ and $\sim 90\%$ in the hadronic and leptonic decay of W^- , respectively after imposing selection cuts.
- Sensitivity of polarization of W⁻ helicities are studied with respect to variation of anomalous couplings.
- Asymmetries of different kinametic variable provide the sensitivity of anomalous couplings of the order of 10⁻¹.
- Exclusion contours through bin analysis further improves the sensitivity of anomalous couplings to the order of $10^{-3} 10^{-2}$ for $|V_{tb}| \Delta f_1^L$ with the variation of 1%-10% systematic error and others are of order 10^{-2} - 10^{-1} at 95%.
- ▶ Combined analysis through error and correlation matrix improves the sensitivity of the left-handed vector and tensor couplings to the order of 10⁻⁴, while right-handed anomalous couplings remain same as in bin analysis.
- Luminosity error affect $|V_{tb}| \Delta f_1^L$.
- Overall comparison with different data shows that *Wtb* anomalous couplings can be probed at LHeC with very high accuracy.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Higgs at LHeC

- "Higgs boson searches and the *Hbb* coupling at the LHeC", B. Mellado, Tao Han, PRD 82 016009 (2010)
 - use of forward jet tagging as a means to secure the observation and to significantly improve the purity of the Higgs boson signal in $H \rightarrow b\bar{b}$
- "Azimuthal angle probe of Anomalous HWW couplings at a High energy e p Collider", B. Mellado et al, PRL 109, 261801 (2012)

$$\begin{split} & \Gamma^{SM}_{\mu\nu} = -g M_V g_{\mu\nu} \\ & \Gamma^{BSM}_{\mu\nu}(p,q) = \frac{g}{M_V} [\lambda(p \cdot q g_{\mu\nu} - p_\nu q_\mu) + \lambda' \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma] \end{split}$$

イロト 不得 とうほう イヨン

-

Di-higgs production at e^- p Collider

CC production channel: $e^-p \rightarrow \nu_e hhj$, $h \rightarrow b\bar{b}$

Lagrangian and Effective vertices

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{hhlh}^{(3)} + \mathcal{L}_{hkWW}^{(3)} + \mathcal{L}_{hhlWW}^{(4)}, \text{ where}$$

$$\mathcal{L}_{hhlh}^{(3)} = \frac{m_h^2}{2\sigma} (1 - g_{hhlh}^{(1)})h^3 + \frac{1}{2}g_{hhhh}^{(2)}h\partial_{\mu}h\partial^{\mu}h,$$

$$\mathcal{L}_{hWW}^{(3)} = -\frac{g}{2m_W}g_{hWW}^{(1)}W^{\mu\nu}W^{\dagger}_{\mu\nu}h - \frac{g}{m_W}\left[g_{hWW}^{(2)}W^{\nu}\partial^{\mu}W^{\dagger}_{\mu\nu}h + \text{h.c.}\right] - \frac{g}{2m_W}\tilde{g}_{hWW}W^{\mu\nu}\tilde{W}^{\dagger}_{\mu\nu}h,$$

$$\mathcal{L}_{hhWW}^{(4)} = -\frac{g^2}{4m_W^2}g_{hhWW}^{(1)}W^{\mu\nu}W^{\dagger}_{\mu\nu}h^2 - \frac{g^2}{2m_W^2}\left[g_{hhWW}^{(2)}W^{\nu}\partial^{\mu}W^{\dagger}_{\mu\nu}h^2 + \text{h.c.}\right] - \frac{g^2}{4m_W^2}\tilde{g}_{hhWW}W^{\mu\nu}\tilde{W}^{\dagger}_{\mu\nu}h^2$$

► Effective Vertices:

$$\begin{split} \mathbf{i}\Gamma_{hhh} &= -6\mathbf{i}\upsilon\lambda_{SM}g_{hhh}^{(1)} - \mathbf{i}g_{hhhh}^{(2)}(p_{1}\cdot p_{2} + p_{2}\cdot p_{3} + p_{3}\cdot p_{1}) \\ \mathbf{i}\Gamma_{hW-W+} &= \mathbf{i}\left[\left\{\frac{g^{2}}{2}\upsilon + \frac{g}{m_{W}}g_{hWW}^{(1)}p_{2}\cdot p_{3} + \frac{g}{m_{W}}g_{hWW}^{(2)}(p_{2}^{2} + p_{3}^{2})\right\}\eta^{\mu_{2}\mu_{3}} \\ &- \frac{g}{m_{W}}g_{hWW}^{(1)}p_{2}^{\mu_{3}}p_{3}^{\mu_{2}} - \frac{g}{m_{W}}g_{hWW}^{(2)}(p_{2}^{\mu_{2}}p_{2}^{\mu_{3}} + p_{3}^{\mu_{2}}p_{3}^{\mu_{3}}) - \mathbf{i}\frac{g}{m_{W}}\tilde{g}_{hWW}\epsilon_{\mu_{2}\mu_{3}\mu_{\nu}}p_{2}^{\mu}p_{3}^{\nu}\right] \\ \mathbf{i}\Gamma_{hhW-W+} &= \mathbf{i}\left[\left\{\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(1)}p_{3}\cdot p_{4} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{2} + p_{4}^{2})\right\}\eta^{\mu_{3}\mu_{4}} \\ &- \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(1)}p_{3}^{\mu_{4}}p_{4}^{\mu_{3}} - \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{\mu_{3}}p_{3}^{\mu_{4}} + p_{4}^{\mu_{3}}p_{4}^{\mu_{4}}) - \mathbf{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{4}\mu_{\nu}}p_{3}^{\mu}p_{4}^{\mu_{3}}\right] \\ &= \mathbf{i}\left[\left\{\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{\mu_{3}}p_{3}^{\mu_{4}} + p_{4}^{\mu_{3}}p_{4}^{\mu_{4}}) - \mathbf{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{4}\mu_{\nu}}p_{3}^{\mu_{2}}p_{4}^{\mu_{3}}\right] \\ &= \mathbf{i}\left[\left\{\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{\mu_{3}}p_{3}^{\mu_{4}} + p_{4}^{\mu_{3}}p_{4}^{\mu_{4}}) - \mathbf{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{4}\mu_{\nu}}p_{3}^{\mu_{4}}p_{4}^{\mu_{3}}\right] \\ &= \mathbf{i}\left[\left\{\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{\mu_{3}}p_{3}^{\mu_{4}} + p_{4}^{\mu_{3}}p_{4}^{\mu_{4}}) - \mathbf{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{4}\mu_{\nu}}p_{3}^{\mu_{4}}p_{4}^{\mu_{3}}\right]\right] \\ &= \mathbf{i}\left[\left(\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{\mu_{3}}p_{3}^{\mu_{4}} + p_{4}^{\mu_{3}}p_{4}^{\mu_{4}}) - \mathbf{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{4}\mu_{\mu}}p_{4}^{\mu_{4}}p_{4}^{\mu_{4}}\right]\right] \\ &= \mathbf{i}\left[\left(\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{\mu_{3}}p_{4}^{\mu_{4}}) - \mathbf{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{\mu}}p_{4}^{\mu_{4}}p_{4}^{\mu_{3}}\right]\right] \\ &= \mathbf{i}\left(\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{2}(p_{3}^{\mu_{4}}p_{4}^{\mu_{4}}) - \mathbf{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{4}\mu_{4}}p_{4}^{\mu_{3}}p_{4}^{\mu_{4}}\right] \\ &= \mathbf{i}\left(\frac{g^{2}}{2} + \frac{g^{2$$

Cross section and Distributions

Process	cc (fb)	NC (fb)	рното (fb)
Signal:	2.40e-01		
bbbbj:	8.20e-01	3.60e+03	2.85e+03
bbjjj:	6.50e+03	2.50e+04	1.94e+06
$zzj(z \rightarrow b\overline{b})$:	7.40e-01	1.65e-02	1.73e-02
tīj(hadronic):	3.30e-01	1.40e+02	3.27e+02
<pre>ttj(semi-leptonic):</pre>	1.22e-01	4.90e+01	1.05e+02

Table : Cross sections (in fb): $E_e = 60 \text{ GeV}$, $E_p = 50 \text{ TeV}$, $j = gu\overline{u}d\overline{d}s\overline{s}c\overline{c}$. Initial cuts: $|\eta| \le 10$ for jets, leptons and b, $P_T \ge 10 \text{ GeV}$, $\Delta R_{\min} = 0.4$ for all particles.

Cross section and Distributions

Process	cc (fb)	NC (fb)	рното (fb)
Signal:	2.40e-01		
bbbbj:	8.20e-01	3.60e+03	2.85e+03
bbjjj:	6.50e+03	2.50e+04	1.94e+06
$zzj(z \rightarrow b\overline{b})$:	7.40e-01	1.65e-02	1.73e-02
tīj(hadronic):	3.30e-01	1.40e+02	3.27e+02
<pre>ttj(semi-leptonic):</pre>	1.22e-01	4.90e+01	1.05e+02

Table : Cross sections (in fb): $E_e = 60 \text{ GeV}$, $E_p = 50 \text{ TeV}$, $j = gu\overline{u}d\overline{d}s\overline{s}c\overline{c}$. Initial cuts: $|\eta| \le 10$ for jets, leptons and b, $P_T \ge 10 \text{ GeV}$, $\Delta R_{\min} = 0.4$ for all particles.

Cross section and Distributions

Process	cc (fb)	NC (fb)	рното (fb)
Signal:	2.40e-01		
bbbbj:	8.20e-01	3.60e+03	2.85e+03
bbjjj:	6.50e+03	2.50e+04	1.94e+06
$zzj(z \rightarrow b\overline{b})$:	7.40e-01	1.65e-02	1.73e-02
tīj(hadronic):	3.30e-01	1.40e+02	3.27e+02
<pre>ttj(semi-leptonic):</pre>	1.22e-01	4.90e+01	1.05e+02

Table : Cross sections (in fb): $E_e = 60 \text{ GeV}$, $E_p = 50 \text{ TeV}$, $j = gu\overline{u}d\overline{d}s\overline{s}c\overline{c}$. Initial cuts: $|\eta| \le 10$ for jets, leptons and b, $P_T \ge 10 \text{ GeV}$, $\Delta R_{\min} = 0.4$ for all particles.

Cut-based Analysis

- ▶ Select 4 *b* + 1-jet: $p_T^{jet} > 20$ GeV, $|\eta| < 7$ for *non-b*-jets, $|\eta| < 5$ for b-jets. The four *b* jets must be well separated within $\Delta R > 0.7$ in case of the overlapped truth matching in the *b*-tagging.
- Rejecting leptons with $p_T^{e^-} > 10$ GeV (suppress the NC process)
- $\eta_{forward-jet} > 4.0$, the forward jet as defined as the *non-b*-jet which has the largest p_T after selecting at least 4 *b*-jets.
- $\blacktriangleright E_T^{miss} > 40 \text{ GeV and } \Delta \Phi_{E_T^{miss}, leadingjet} > 0.4, \Delta \Phi_{E_T^{miss}, subleadingjet} > 0.4.$
- ▶ Pair the four *b*-jets into two pairs and calculate the invariant masses of each pair. The composition of the pairs which has the smallest variance of mass to $(m_H 40)$ GeV is chosen. The first pair is defined as $90 < M_1 < 125$, which must have the leading *b*-jet. The other pair is defined as $75 < M_2 < 125$.
- ▶ Choosing the invariant mass of all four *b*-jets > 280 GeV.

Significance: $s = \sqrt{2((S+B)\log(1+S/B)-S)}$ Expected relative error: $\frac{\Delta S}{S} = \frac{\sqrt{2 \times S + 2 \times B + (0.05 \times S)^2 + (0.05 \times B)^2}}{S}$, where S and B are expected signal and background yields in $\mathcal{L} = 10 ab^{-1}$ with 5% systematic error.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Cut-based Analysis

Samples	Signal	CCJet	NCJet	ССТор	NCTop
Initial	$2.36e+03 \pm 4.82$	6.45e+06 ± 9.3e+03	2.5e+08 ± 4.26e+05	$4.49e+03 \pm 5.03$	7.4e+06 ± 6.86e+0
4 b and 1 light jets	299 ± 1.16	293 ± 7.56	$2.23e+04 \pm 678$	5.72 ± 0.023	9.87e+03 ± 31.1
Electron rejection	299 ± 1.16	293 ± 7.56	6.84e+03 ± 385	5.66 ± 0.0229	6.43e+03 ± 28
Forward jet	224 ± 1.01	22.9 ± 1.39	864 ± 65.1	0.399 ± 0.00537	307 ± 5.8
E_T^{miss}	149 ± 0.823	18.7 ± 0.981	93.9 ± 26.7	0.372 ± 0.00524	85.4 ± 2.86
$E_T^{miss} - \phi$ rejection	128 ± 0.76	16.8 ± 0.957	45.3 ± 14	0.326 ± 0.00493	63.6 ± 2.48
M ₁ M ₂	71 ± 0.568	1.49 ± 0.216	0.151 ± 0.0866	0.06 ± 0.00212	11.1 ± 1.08
M _{4b}	63.4 ± 0.536	0.849 ± 0.191	0.151 ± 0.0866	0.0346 ± 0.00141	5.4 ± 0.776
Samples	CCZZj	NCZZj	NCPhotoProd	Total background	Significance
Samples Initial	CCZZj 7.36e+03 ± 10.6	NCZZj 338 ± 0.426	NCPhotoProd 2.1e+09 ± 3.43e+06	Total background 2.36e+09 ± 3.5e+06	Significance 0.049
Samples Initial 4 b and 1 light jets	CCZZj 7.36e+03 ± 10.6 678 ± 2.19	$\frac{\text{NCZZj}}{338 \pm 0.426}$ 21.7 ± 0.0707	NCPhotoProd 2.1e+09 ± 3.43e+06 7.36e+04 ± 4.21e+03	Total background 2.36e+09 ± 3.5e+06 1.07e+05 ± 4.3e+03	Significance 0.049 0.92
Samples Initial 4 b and 1 light jets Electron rejection	$\begin{array}{c} \text{CCZZj} \\ \hline 7.36\text{e}{+}03 \pm 10.6 \\ \hline 678 \pm 2.19 \\ \hline 678 \pm 2.19 \end{array}$	$\begin{array}{c} \text{NCZZj} \\ 338 \pm 0.426 \\ 21.7 \pm 0.0707 \\ 14 \pm 0.0614 \end{array}$	NCPhotoProd 2.1e+09 ± 3.43e+06 7.36e+04 ± 4.21e+03 6.23e+04 ± 1.29e+03	$\begin{array}{c} \mbox{Total background} \\ 2.36e+09 \pm 3.5e+06 \\ 1.07e+05 \pm 4.3e+03 \\ \hline 7.65e+04 \pm 1.4e+03 \end{array}$	Significance 0.049 0.92 1.1
Samples Initial 4 b and 1 light jets Electron rejection Forward jet	$\begin{array}{c} \text{CCZZj} \\ \hline 7.36\text{e}{+}03 \pm 10.6 \\ \hline 678 \pm 2.19 \\ \hline 678 \pm 2.19 \\ \hline 380 \pm 1.64 \end{array}$	$\begin{array}{c} \text{NCZZj} \\ 338 \pm 0.426 \\ 21.7 \pm 0.0707 \\ 14 \pm 0.0614 \\ 1.04 \pm 0.014 \end{array}$	$\begin{array}{c} \text{NCPhotoProd} \\ \hline 2.1e+09 \pm 3.43e+06 \\ \hline 7.36e+04 \pm 4.21e+03 \\ \hline 6.23e+04 \pm 1.29e+03 \\ \hline 1.43e+04 \pm 297 \end{array}$	Total background 2.36e+09 ± 3.5e+06 1.07e+05 ± 4.3e+03 7.65e+04 ± 1.4e+03 1.59e+04 ± 3e+02	Significance 0.049 0.92 1.1 1.8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{CCZZj} \\ \hline 7.36e+03 \pm 10.6 \\ \hline 678 \pm 2.19 \\ \hline 678 \pm 2.19 \\ \hline 380 \pm 1.64 \\ \hline 342 \pm 1.55 \end{array}$	$\begin{array}{c} \text{NCZZj} \\ 338 \pm 0.426 \\ 21.7 \pm 0.0707 \\ 14 \pm 0.0614 \\ 1.04 \pm 0.014 \\ 0.18 \pm 0.00575 \end{array}$	NCPhotoProd 2.1e+09 ± 3.43e+06 7.36e+04 ± 4.21e+03 6.23e+04 ± 1.29e+03 1.43e+04 ± 297 980 ± 21.9	$\begin{array}{c} \hline \text{Total background} \\ \hline 2.36e+09 \pm 3.5e+06 \\ \hline 1.07e+05 \pm 4.3e+03 \\ \hline 7.65e+04 \pm 1.4e+03 \\ \hline 1.59e+04 \pm 3e+02 \\ \hline 1.52e+03 \pm 35 \end{array}$	Significance 0.049 0.92 1.1 1.8 3.8
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$\begin{array}{c} \text{CCZZj} \\ \hline 7.36\text{e}+03 \pm 10.6 \\ \hline 678 \pm 2.19 \\ \hline 678 \pm 2.19 \\ \hline 380 \pm 1.64 \\ \hline 342 \pm 1.55 \\ \hline 287 \pm 1.42 \end{array}$	$\begin{array}{c} \text{NCZZ}_{\text{j}} \\ 338 \pm 0.426 \\ 21.7 \pm 0.0707 \\ 14 \pm 0.0614 \\ 1.04 \pm 0.014 \\ 0.18 \pm 0.00575 \\ 0.1 \pm 0.00427 \end{array}$	$\begin{array}{c} \text{NCPhotoProd} \\ 2.1e+09 \pm 3.43e+06 \\ 7.36e+04 \pm 4.21e+03 \\ 6.23e+04 \pm 1.29e+03 \\ 1.43e+04 \pm 297 \\ 980 \pm 21.9 \\ 440 \pm 10.4 \end{array}$	$\begin{array}{c} \mbox{Total background} \\ \mbox{2.36e+09} \pm 3.5e+06 \\ \mbox{1.07e+05} \pm 4.3e+03 \\ \mbox{7.65e+04} \pm 1.4e+03 \\ \mbox{1.59e+04} \pm 3e+02 \\ \mbox{1.52e+03} \pm 35 \\ \mbox{853} \pm 18 \end{array}$	Significance 0.049 0.92 1.1 1.8 3.8 4.3
$\begin{tabular}{ c c c c c }\hline Samples & \\ Initial & \\ 4 b and 1 light jets & \\ \hline Electron rejection & \\ \hline Forward jet & \\ \hline E_T^{miss} & -\phi rejection & \\ \hline M_1 & M_2 & \\ \hline \end{tabular}$	$\begin{array}{c} \text{CCZZj} \\ \hline 7.36\text{e}+03 \pm 10.6 \\ \hline 678 \pm 2.19 \\ \hline 678 \pm 2.19 \\ \hline 380 \pm 1.64 \\ \hline 342 \pm 1.55 \\ \hline 287 \pm 1.42 \\ \hline 16.8 \pm 0.344 \end{array}$	$\begin{array}{c} \text{NCZZj} \\ 38 \pm 0.426 \\ 21.7 \pm 0.0707 \\ 14 \pm 0.0614 \\ 1.04 \pm 0.014 \\ 0.18 \pm 0.00575 \\ 0.1 \pm 0.00427 \\ 0.00613 \pm 0.00117 \end{array}$	$\begin{array}{c} NCPhotoProd \\ 2.1e+09 \pm 3.43e+06 \\ 7.36e+04 \pm 4.21e+03 \\ 6.23e+04 \pm 1.29e+03 \\ 1.43e+04 \pm 297 \\ 980 \pm 21.9 \\ 440 \pm 10.4 \\ 54.4 \pm 1.21 \end{array}$	$\begin{array}{c} \mbox{Total background} \\ 2.36e+09 \pm 3.5e+06 \\ 1.07e+05 \pm 4.3e+03 \\ 7.65e+04 \pm 1.4e+03 \\ 1.59e+04 \pm 3e+02 \\ 1.52e+03 \pm 35 \\ 853 \pm 18 \\ 84.00 \pm 1.68 \end{array}$	Significance 0.049 0.92 1.1 1.8 3.8 4.3 6.9

Table : Number of events after optimization and weighted with luminosity $\mathcal{L} = 10 \text{ ab}^{-1}$. The abbreviations CC(NC)Jet and CC(NC)Top accounts for the weighted sum of CC(NC) backgrounds 1, 2 and 4, 5 as given in Table 1. NCPhotoProd refer to weighted sum of all PHOTO-production.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Statistical Analysis

$$\begin{array}{l} \bullet \ g_{hhh}^{(1)} \rightarrow \lambda, g_{hhh}^{(2)} \sim 10^{-4} - 10^{-3}, \\ \bullet \ g_{hWW}^{(1)} \sim 10^{-1}, g_{hWW}^{(2)} \sim 10^{-3} - 10^{-2}, \\ \bullet \ g_{hhWW}^{(1)} \sim 10^{-2}, g_{hhh}^{(2)} \sim 10^{-3} - 10^{-2}, \\ \bullet \ \tilde{g}_{hWW} \sim 10^{-1}, \tilde{g}_{hhWW} \sim 10^{-2}. \end{array}$$

0.0

Statistical Analysis

$$\begin{array}{l} \bullet \ g_{hhh}^{(1)} \rightarrow \lambda, g_{hhh}^{(2)} \sim 10^{-4} - 10^{-3}, \\ \bullet \ g_{hWW}^{(1)} \sim 10^{-1}, g_{hWW}^{(2)} \sim 10^{-3} - 10^{-2}, \\ \bullet \ g_{hhWW}^{(1)} \sim 10^{-2}, g_{hhh}^{(2)} \sim 10^{-3} - 10^{-2}, \\ \bullet \ \tilde{g}_{hWW} \sim 10^{-1}, \tilde{g}_{hhWW} \sim 10^{-2}. \end{array}$$

0.0

Statistical Analysis

$$\begin{array}{l} \bullet \ g_{hhh}^{(1)} \rightarrow \lambda, g_{hhh}^{(2)} \sim 10^{-4} - 10^{-3}, \\ \bullet \ g_{hWW}^{(1)} \sim 10^{-1}, g_{hWW}^{(2)} \sim 10^{-3} - 10^{-2}, \\ \bullet \ g_{hhWW}^{(1)} \sim 10^{-2}, g_{hhh}^{(2)} \sim 10^{-3} - 10^{-2}, \\ \bullet \ \tilde{g}_{hWW} \sim 10^{-1}, \tilde{g}_{hhWW} \sim 10^{-2}. \end{array}$$

0.0