PGAS in-memory data processing for the Processing Unit of the Upgraded Electronics of the Tile Calorimeter of the ATLAS Detector

Daniel Ohene-Kwofie

University of the Witwatersrand Johannesburg, South Africa

High Energy Particle Physics Workshop 2015 February 2015

Outline

2 Motivation

Preliminary Evaluations

• The continuously growing gap between CPU and I/O speed presents a great challenge to the performance in high performance and high-throughput computing.

- The continuously growing gap between CPU and I/O speed presents a great challenge to the performance in high performance and high-throughput computing.
- The compute power of CPUs has been growing in line with Moore's law ever since it was predicted.
- The performance of storage subsystems has not kept up with the performance requirement of applications.

- The continuously growing gap between CPU and I/O speed presents a great challenge to the performance in high performance and high-throughput computing.
- The compute power of CPUs has been growing in line with Moore's law ever since it was predicted.
- The performance of storage subsystems has not kept up with the performance requirement of applications.
- The rapid growth in data volumes from scientific projects such as the Large Hadron Collider (LHC) for instance, further increases the computing challenge.

Introduction

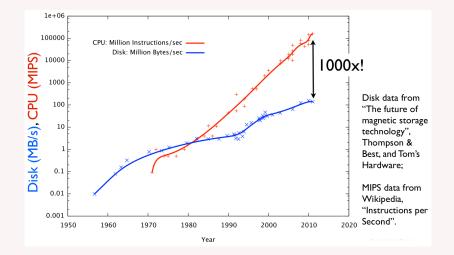
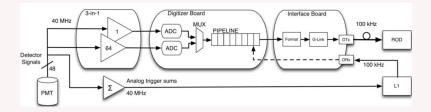


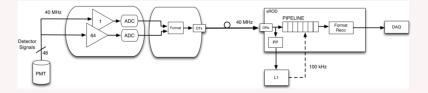
Figure: Increasing speed gap between disks and CPUs

Daniel Ohene-Kwofie

PGAS in-memory data processing for the Processing Unit of the


• TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN.

- TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN.
- Scheduled upgrades in 2022 will result in an increase in data output from the TileCal to about *41 Tb/s*.


- TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN.
- Scheduled upgrades in 2022 will result in an increase in data output from the TileCal to about *41 Tb/s*.
- Storing such massive data for offline processing is infeasible and presents a great challenge.

- TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN.
- Scheduled upgrades in 2022 will result in an increase in data output from the TileCal to about *41 Tb/s*.
- Storing such massive data for offline processing is infeasible and presents a great challenge.
- The Super Read-Out Driver (sROD) is a core element of the back-end electronics after the upgrades.
 - The sROD will perform some processing before sending data to the rest of the triggering and data acquisition system.

Introduction: ATLAS TileCal Read Out Architecture

Figure: ATLAS TileCal current read out architecture

Figure: ATLAS TileCal upgraded read out architecture with sROD

Daniel Ohene-Kwofie

PGAS in-memory data processing for the Processing Unit of the

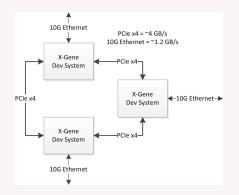
• The need for general purpose processing to enhance high-data throughput at the sROD of the upgraded TileCal.

- The need for general purpose processing to enhance high-data throughput at the sROD of the upgraded TileCal.
- There is a general growing need for fast storage systems that match the computational speed and efficiency required for high data throughput.

- The need for general purpose processing to enhance high-data throughput at the sROD of the upgraded TileCal.
- There is a general growing need for fast storage systems that match the computational speed and efficiency required for high data throughput.

- The need for general purpose processing to enhance high-data throughput at the sROD of the upgraded TileCal.
- There is a general growing need for fast storage systems that match the computational speed and efficiency required for high data throughput.

MAC project at Wits is developing a cost-effective, and high data throughput Processing Unit (PU) using ARM processors.


- The need for general purpose processing to enhance high-data throughput at the sROD of the upgraded TileCal.
- There is a general growing need for fast storage systems that match the computational speed and efficiency required for high data throughput.

MAC project at Wits is developing a cost-effective, and high data throughput Processing Unit (PU) using ARM processors.

The PU will serve as a general purpose co-processor to the sROD to enhance and provide new functionality that is difficult to implement on FPGA.

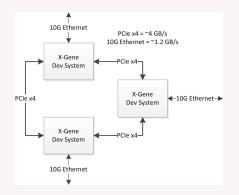
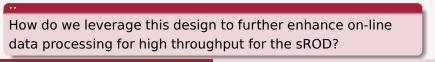
Motivation

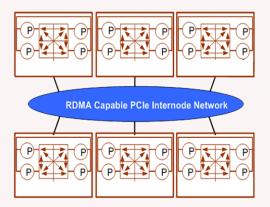
General Purpose PU for the sROD

Figure: Schematic: PU architecture

Motivation

General Purpose PU for the sROD


Figure: Schematic: PU architecture

Daniel Ohene-Kwofie

PGAS in-memory data processing for the Processing Unit of the

The PGAS Strategy

Figure: Schematic: PGAS layout with PU

The The PGAS Strategy

Memory aggregation to provide a global logical memory address space for data processing.

The The PGAS Strategy

Memory aggregation to provide a global logical memory address space for data processing.

Provides..

- ease of general purpose processing using semantics similar to that of shared memory systems.
- better overlap of communication with computation

The The PGAS Strategy

Memory aggregation to provide a global logical memory address space for data processing.

Provides..

- ease of general purpose processing using semantics similar to that of shared memory systems.
- better overlap of communication with computation

Leverage RDMA over PCIe to enhance memory-to-memory data copy.

- Provide low latencies
- High throughput

The PGAS Strategy

A complete RAM-based storage could yield a very high-throughput (100 - 1000x) at very low-latency (100 - 1000x).

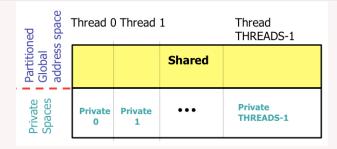
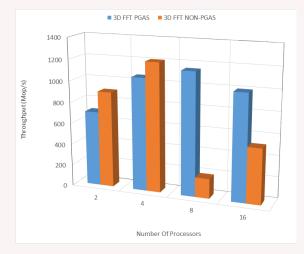


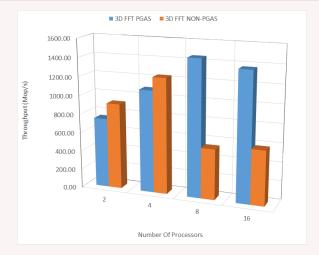
Figure: Schematic: PGAS layout with PU

Experimental Setup

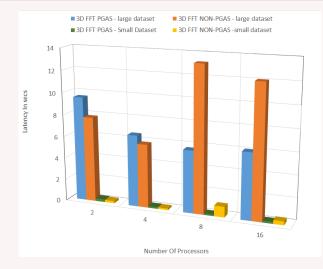


- 4 nodes of the Wits Tegra K1 cluster.
- 2GB of memory each and 1Gbp Ethernet interconnect between nodes.
- NASA Advanced Supercomputing (NAS)
 Parallel Benchmarks is used.

Experimental Setup


Selected Kernel

Fast Fourier Transform: This benchmark solves a 3D partial differential equation using an FFT-based spectral method, also requiring long range communication. FT performs three one-dimensional (1-D) FFT's, one for each dimension.


Figure: Throughput : $64 \times 64 \times 64$ 3D-grid

Daniel Ohene-Kwofie PGAS in-memory data processing for the Processing Unit of the

Figure: Throughput : $256 \times 256 \times 128$ 3D-grid

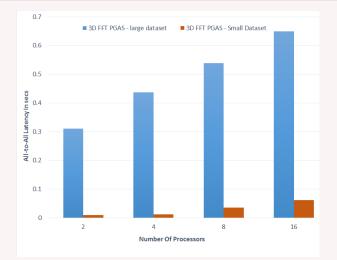

Daniel Ohene-Kwofie PGAS in-memory data processing for the Processing Unit of the

Figure: Average Latency for varying workloads

Daniel Ohene-Kwofie

PGAS in-memory data processing for the Processing Unit of the

Figure: Average Latency due to All-to-All collective operation

Daniel Ohene-Kwofie

PGAS in-memory data processing for the Processing Unit of the

Conclusions

- Preliminary investigation demonstrate horizontal scalability of the architecture and thus present a low cost alternative to large data science projects such as ATLAS data processing.
- Low cost and power efficient ARM with PGAS could therefore be used as general purpose co-processors to the sROD for high throughput data processing.

Conclusions

- Preliminary investigation demonstrate horizontal scalability of the architecture and thus present a low cost alternative to large data science projects such as ATLAS data processing.
- Low cost and power efficient ARM with PGAS could therefore be used as general purpose co-processors to the sROD for high throughput data processing.

Future investigations with Remote Direct Memory Access (RDMA) over PCIe is expected to provide much lower latency and higher throughput.

Thank you...