DEVELOPMENT & TESTING: ADC BOARD FOR THE PROMETEO TEST-BENCH

MATTHEW SPOOR

University of the Witwatersrand

HEPP 2015

OVERVIEW

- ATLAS Tile Calorimeter
- Hybrid demonstrator
- o Prometeo Test-bench
- Prometeo ADC board
- Outlook

PHASE-II UPGRADE

Present front-end electronics

Equivalent Phase-II upgrade electronics

Complete replacement of the front-end and back-end electronics introducing a new read-out architecture

HYBRID DEMONSTRATOR

- Validation of the new readout architecture, trigger system interfaces.
- Divides each TileCal module into 4 independent minidrawers.
- Mini-drawer: Mainboard, Daughterboard, 12 PMTs, HV card and Adder board
- Compatible with old architecture.
- High level of redundancy

A Portable ReadOut ModulE for Tilecal ElectrOnics **PROMETEO**

A Portable ReadOut ModulE for Tilecal ElectrOnics **PROMETEO**

DEVELOPMENT OF THE ADC BOARD

AIM: Test and Validate the design of the new ADC board.

- Firmware needs to be re-designed to work on modern FPGAs. (Xilinx Virtex 7)
- Identify and fix any design faults found in prototype design for next production.
- Perform system function testing in new electronics Laboratory.

ADC BOARD

- Custom board that receives and digitises analog signals from the trigger outputs of the super drawer at 40 MHz
- Trigger data used for Hadron and Muon selection
- Four layer PCB with two ADS5271 chips
- 8-channel, 12-bit, 50 MSPS analog-to-digital converters
- PCB redesigned to connect to the VC707 via FMC connection
- LVPS channels transfer serialised data at 480 Mbps

MobiDICK4 ADC

Prometeo ADC

FIRMWARE

New firmware had to be built to interface the ADC board with the Virtex 7 FPGA

All FPGA firmware is designed using HDL

- Describes hardware interconnects
- Bit Level programming
- Non-sequential language
- Exceptionally efficient

As the same ADCs chips themselves have not changed the similar design algorithms could be used.

Data lines to/ from the ADC board.

- 16 Differential pairs for Data transfer (240MHz)
- 8 Differential pairs for clock synchronisation
- 10 signals to ADC for board setup HDMI Video Connector (P2) HDMI Controller (U48)

FIRMWARE SIMULATIONS

Precise timings needed to set up ADC chips correctly

CHIPSCOPE SIMULATIONS

Х	0	105 265 425 585 745 905 1065 1225 1385 1545 1
0	0	p
1	1	1
1	1	
0	0	
0	0	p
1	1	1
1	1	
0	0	
E E	E E	
0	0	
1	1	
AF	AF	
1	1	
1	1	
0	0	
	X 0 1 0 0 1 1 0 1 1 0 1 AF 1 1 0	X O 0 0 1 2 0 0 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 1 2 0 0

CHIPSCOPE BOARD TESTING

Clocking Issues: 40 MHz not reaching ADCs

FIXED CLOCKING PROBLEMS

Bus/Signal	х	0	985	990	995		1005	1010	1015	1020	1025	1030	1035	1040	1045
/clock40	0	0													
/ADC1_logic/frame_clk	1	1													
-/ADC1_logic/bit_clk	0	0													
<pre>/ADC2_logic/frame_clk</pre>	1	1													
<pre>-/ADC2_logic/bit_clk</pre>	1	1													
<pre> /ADC1_logic/datasig </pre>	FF	FF	EBEDC370D)EE	(BC)7707B6	BC3ZDBEE) BCICIDE)\$C;77C)E	BC377C7EBE	DC37C7EB	BC3CC/EBE)C)(C)(B)	BCCCCB6	DC37DD7EB(BC3CC/BE	96373C
<pre>-/ADC1_logic/datasig<0></pre>	1	1													
<pre>-/ADC1_logic/datasig<1></pre>	1	1													
<pre>-/ADC1_logic/datasig<2></pre>	1	1													
<pre>- /ADC1_logic/datasig<3></pre>	1	1													
<pre>- /ADC1_logic/datasig<4></pre>	1	1													
<pre>-/ADC1_logic/datasig<5></pre>	1	1													
<pre>-/ADC1_logic/datasig<6></pre>	1	1													
/ADC1_logic/datasig<7>	1	1													
<pre></pre>	AF	AF	DCCEDCCE	ED CREEDERS	BECCE)C3EEC3E)DC30DC3(BEC BEC	3368633	DC3CDC3C)DC3CB(D)	CIEDCIEE	DC3EDC3(BECCE	388EC:
<pre>-/ADC2_logic/datasig<0></pre>	1	1													
<pre>-/ADC2_logic/datasig<1></pre>	1	1													
<pre>-/ADC2_logic/datasig<2></pre>	1	1													
<pre>-/ADC2_logic/datasig<3></pre>	1	1													
<pre>-/ADC2_logic/datasig<4></pre>	0	0													
<pre>-/ADC2_logic/datasig<5></pre>	1	1													
<pre>-/ADC2_logic/datasig<6></pre>	0	0													
<pre>/ADC2 logic/datasig<7></pre>	1	1													

PCB AND CIRCUIT DESIGN CHANGES

- PCB redesigned to be compatible with VC707 Dev board
- Improved power regulation systems
- Various component footprints changed.
- Repositioned indicator LEDs for easier viewing
- Component & Wire shifting to improve signal quality
- New 20 PIN output added to allow the Prometeo LED driver board to attach

OUTLOOK

- Finalisation of next iteration of ADC board schematics and PCB design (Feb)
- Get quotations for the production of 2 new ADCs boards (Feb)
- Manufacture of the next ADC board prototype in South Africa (April)
- Finalisation of firmware development (April)
- Testing and validation of the next version of ADC board (July)

Manufacture of 2 new ADC Boards

QUESTIONS?