

LHC Injectors Upgrade

Outline

Foreword

Relevant Observables

H⁻ injection System & Half Sector Test

Conclusion

LIU-PSB-BI Work Package

- Total budget: 3635 kCHF
- 5 budget codes

Machine sector	Total: 20 Work Units					
BI line	2					
H ⁻ Injection & Half Sector Test	6 + 3					
Ring	5					
Extraction lines	4					

4 cost drivers represent 79.8 % of the WP budget

Wire Scanners: 970 kCHF

Booster TMS: 750 kCHF

Upgrade for L4: 648 kCHF

- BLMs: 532 kCHF

Outline

- Foreword
- Relevant Observables
 - Beam intensity
 - Beam profile
 - Beam loss
 - Beam position
- H⁻ injection System & Half Sector Test
- Conclusion

Relevant Observables

- Beam Intensity
 - Injection efficiency (Slow)
 - Acceleration efficiency (DC)

Beam Profile

- Transfer-lines: septum position plates
- Injection matching
- Transverse emittance

Beam Loss

Ring and transfer lines: Monitoring

Beam Position

- Orbit and trajectory
- Transverse instabilities between PSB and PS

BEAM INTENSITY

Measurement of injection efficiency with Linac4

Summary

- Baseline: LS2
- Four monitors BR.TMD in 8L1, installed in '72, un-used since early 80s'
- Analog turn by turn acquisition, up to 100 turns
- Watchdog: comparison with BI.BCT20 after 100 turns

Status after LS1

One BCT available (without shielding) in the laboratory

Plans for 2015-2016

- Study of the electronics, test of a prototype in the machine
- Manufacturing of a ceramic vacuum chamber. There is no spare!

Plans for 2017

- Manufacturing of the Front and Back End Electronics
- Specification of the SW for the acquisition chain based on the TRIC card

Plans for LS2 (mid 2018 and 2019)

- New cables pulling
- Reshuffle the monitors in the BI radioactive workshop
- Installation : monitors & Electronics
- Full system commissioning

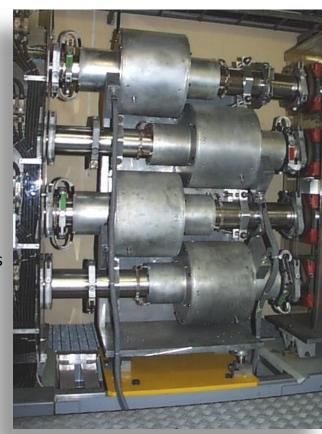
BEAM INTENSITY

Quantify total intensity transmission during PSB cycle

Summary

- Baseline: End 2017
- Four monitors BR.BCTDC in section 9 (DCCT)

Status after LS1


- Acquisition chain upgraded
 - 12 bit ADC replaced by 16 bit ADC (VD80)
 - Simplification of the HW (intervalometers for the hot spots replaced by markers acquired with the ADC)
 - Common Expert GUI for the DCCTs in the injectors ©
- Front End Electronics assembled: Not installed due to higher priorities
- Front End housing: manufacturing launched (BI-ML)

Plans for 2015

- Test of the new B Train Receiver (White Rabbit, SVEC VME card) in // with the current ß Normalizer based on the old B Train
- Share the firmware and the mezzanine: contact H. Damerau (RF)
- Installation of the new Front End Electronics (TS 2015-2016)

Plans for 2016-2017

- Installation of the new B train (White Rabbit) Receiver
- Adaptation for Linac4 intensities: Front and Back End for Linac 4

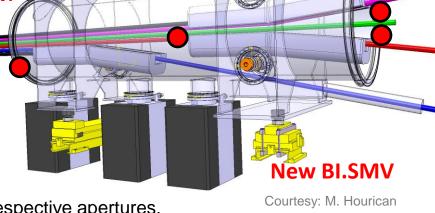
BEAM PROFILE

PSB-BP-ES-0003

0.1

DRAF

1460863


BI.SMV position measurement plates w/ Linac4

New WU created in 2014, baseline End 2016. Still OK?

New INJECTION SEPTUM for 160 MeV beams

Based on existing system

- Specifications under discussion w/ Bettina
- Ensure the <u>distributed beams</u> are centered in their respective apertures.
 - @ input plates: stripped electrons charge deposition
 - @ output plates: secondary emission, expected to be very weak!
- Linear, 10⁴ dymanic range, large bandwith (min 50ns beam pulse), Direct signals on OASIS
- No interlock, no aperture restriction
- Planning for 2015 (in agreement with TE-ABT Team)
 - April-June: Design
 - Mid- Sept: Procurement of parts: Ti plates 1mm thick
 - October: Installation in BI.SMV

9 CERN

BEAM PROFILE

Turn by turn meas. for injection matching w/ Linac4

Specifications:

- Baseline: LS2
- injection of half a PSB turn (i.e. 0.5 μs, 2x10¹¹ protons) to well separate turn-by-turn profiles.
 Only Ring 3 H+V planes
- acquisition of say up to 20 consecutive profiles
- External condition interlock: to shorten the Linac4 pulse (max 1-turn-injection)
- NOT PPM In/Out
- Permament implementation for commissioning, MDs and operation
- Compact SEM grids, grid size : 26mm, 64 graphite wires (Ø= 33 μm)
- Thick frame for stopping scattered protons

Status

- Mechanics designs: not started
- Electronics : conceptual design started
- Proposed SEM's integration: section 4L1
- To do: Space Reservation Request for 4L1+ ECR

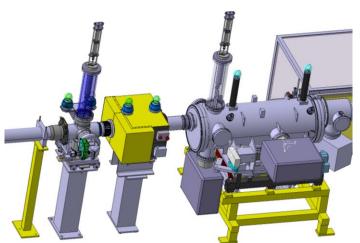
BEAM PROFILEWire Scanner

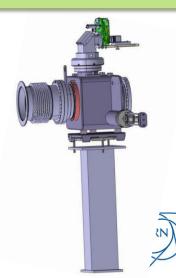
- Baseline: LS2
- Aim: adaption of the scanner design for the PS and SPS to the limited space in the PSB
- Status
 - Mechanical design proposals are under discussion:
 - Development of control end acquisition electronics advancing
 - Proposed BWS' integration: section 11L1 + 16L1 ?
 - To do: Space Reservation Request for 11L1 and 16L1+ ECR
- **2015**
 - Two prototypes (SPS + Lab) are used for optimisation and development of control electronics
 - If PSB study shows that integration is possible, then we can finalize the design (mechanics)
 - Budget update
- **2016**
 - production prototype scanner for installation YETS16-17
- 2017
 - commissioning of prototype
- Aim: Completion during LS2
- but we are on the critical path

Courtesy: B. Dehning

BI is in favor having 2 sections: could be 16L1


BEAM PROFILE


New Housings for BI.BTV30, BT.BTV10 and 30


MOTIVATION:

The need of longer magnetic length for Septa induced by increased beam energy

	<u> </u>	' '	07							
Monitor	BT.BTV10	BT.BTV30	BI. BTV30							
Status	Tanks installed	Design i	n good progress							
Plan for 2015	Production	Production of optical mechanical part and of support								
	Production of transition pipes	Tank production								
		SSR + ECR Modification of adjacent pipes								
Baseline LS2	Monitors in	Modification of existing tank								

BEAM LOSS PBS and Transfer lines BLM system

LINAC4 Project Document No.

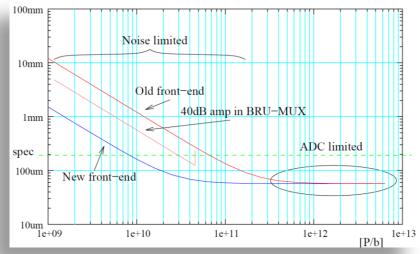
L4-CIB-ES-0001 rev. 1.0

CERN Div./Group or Supplier/Contractor Document No.

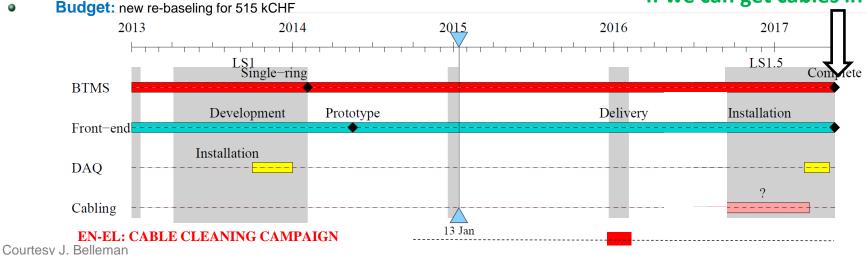
BE/OP

EDMS Document No. 1016233

- Baseline: End 2016
- Ionization Chambers (ICs): from LHC, for free
- Status
 - ICs in L2 sections
 - WU completed during LS1: Cable pulling
 - Flat ICs in L3 sections
 - 2014-15: monitors' procurement
 - YETS16-17: cable pulling ECR
 - 2017: commissioning/operation
 - ICs for injection and extraction lines
 - 2014-15: Electronics procurement
 - YETS16-17: cable pulling
 - 2017: commissioning/operation
- All systems should be ready for the 2017 start-up if cabling is granted


BEAM POSITION

Ring Trajectory Measurement System


- **Specifications**
 - **Baseline: LS2**
 - Bunch-by-bunch, turn-by-turn trajectories over the whole cycle
 - Various derived averages (Orbits, M[RV]P)
 - Position resolution 200µm
 - No more multiplexing over the four rings
 - New front-end electronics with settable gain
- **Status**
 - One full ring can be acquired, multiplexed, Design target resolution of 0.2mm
 - Software: FESA interface, with hooks for YASP and the Sampler + Expert GUI
 - We're still using the old front-end electronics, without VGAs
 - Interference on analogue signals is a real nuisance

Start-up 2017: New request from OP for project COMPLETION

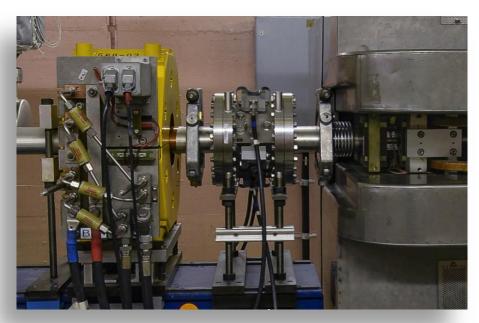
BEAM POSITIONWide Band BPM in the BTP line

Baseline: End 2016

Specifications

- Spot transverse instabilities during beam transfer between PSB ans PS
- Based on existing PS design (section 94)

Status


Not started

Plans for 2015

- Design + production
- DIC
- Space reservation Request in BTP + ECR

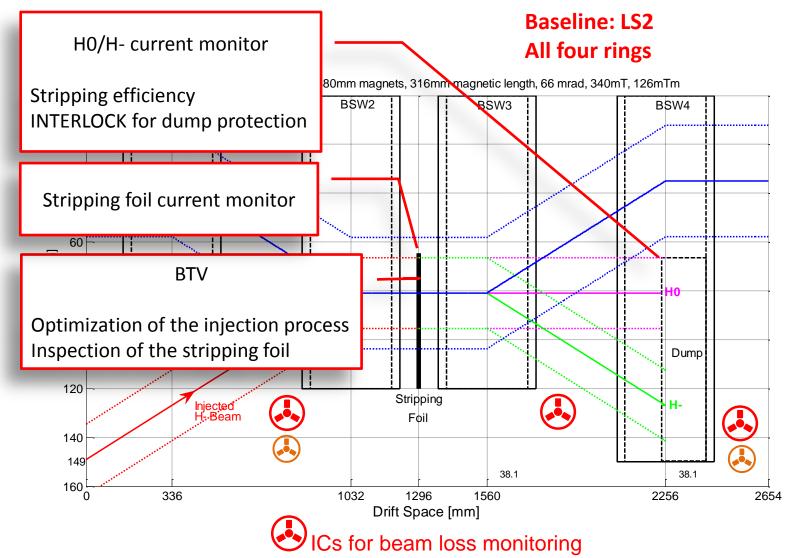
Plans for 2016

- Installation and commissioning
- Acquisition : OASIS

BEAM POSITION

Inductive BPMs in the extraction lines

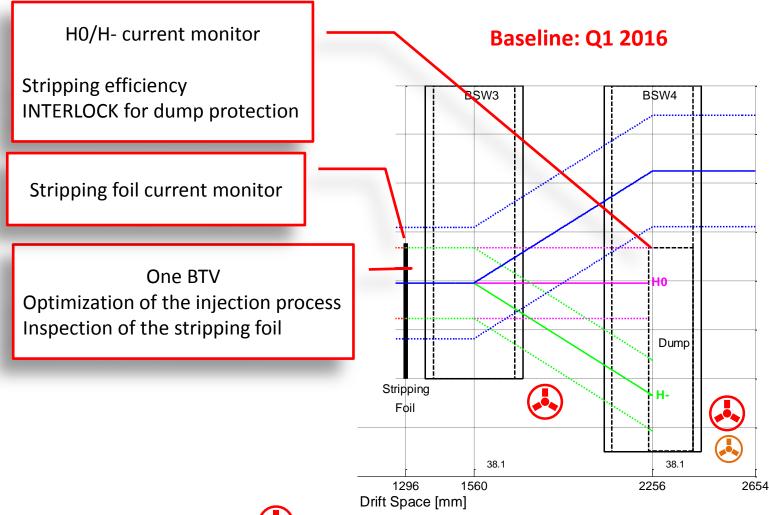
- Baseline: LS1
- Upgrade
 - 8 monitors + 2 spares
 - New front and back end electronics for compatibility with Linac4 beams
 - New lab test bench
- BTP and BTM lines: LIU budget
- Status
 - WU completed during LS1
 - Some interference noise with beam being investigated



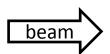
Outline

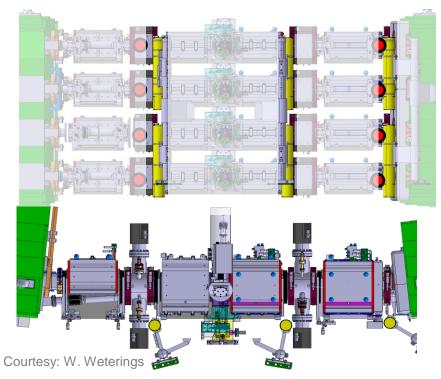
- Foreword
- Relevant Observables
 - Beam intensity
 - Beam profile
 - Beam loss
 - Beam position
- H⁻ injection System & Half Sector Test
- Conclusion

Beam Diagnostics for the new H- chargeexchange injection system in section 1L1



Beam Diagnostics for the new H⁻ charge-exchange injection system: HST in Linac4 tunnel





New H⁻ charge-exchange injection system Beam Loss and Interlock Systems

Ionization chambers: x6

Monitoring foil degradation
Machine protection (H0/H- dump)
Interlock

Diamond: x8

Monitor fast losses & foil degradation Optimize stripping efficiency

Both detectors share the same support system

	Monitoring	Observation	Half Sector Test						
Status	BLM support design and integration done								
2015	Acquisition chain	Acquisition chain Diamond detector	Installation + cabling						
2016			Commissioning						
YETS 16-17	Cabling	Cabling							

New H⁻ charge-exchange injection system H0/H⁻ Current Monitor

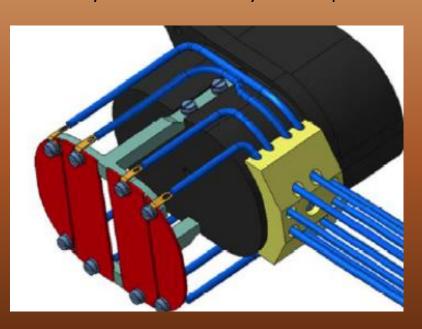
L4-T-EP-0003 rev 1.0

L4-1-LF-0003 16V 1.0

CERN Div./Group or Supplier/Contractor Document No.

TE/ABT

EDMS Document No.


1069244

Monitor to be installed in front of each H0/H-dump.

- low-Z material, low activation: Titanium plates
- medium-level conductivity (best compromise between read-out of the deposited charge and the presence of a pulsed magnetic field)

Fabrication can be launched

- BI wants to approve the production drawings
- B.Riffaud (MME) (via BI-ML?)
 - 1 system will be ready for HST part 2

lectronics Design Ongoing

- 1 VME per ring, with following outputs
 - Interlock
 - 4xOasis (fast Amplifier)
 - 4xIntegrator (from 50ns to 1us)
 - 1xStripping foil current (next slide)
- 1 MHz ADC
 - Interlock
 - Sampling of integrator @ 1us
 → time signal
- DAC for interlock reference
- Will be ready for HST
 - Part1: only stripping foil current
 - Part2: first H0-H- current system

New H⁻ charge-exchange injection system **H0/H**- Stripping Foil Current

- Signal cable feed through included in mechanical design
- BI is responsible from signal feedthrough
- Electronics design on going
 - Included in H0-H- VME, same readout
 - BIAS +-10V via DAC likely envisaged (if compatible with magnetic fields)
- Will be ready for HST part 1

Design

Integration

Production

Interlock

Assembly/Test

New H⁻ charge-exchange injection system

Beam Profile and Foil Inspection

Between Screen and Foil movements to avoid collision

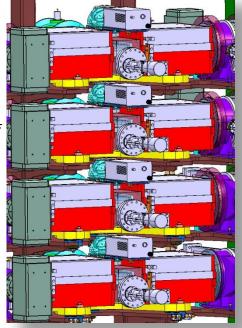
BTV Stripping Foil										
Project	Number	Permanent	Installation							
L4T	1	Yes	Q3 2015							
HST	1	No	Q1 2016							
BOOSTER	4	Yes	2018-2019							
Spare	2	-	-							

Status
In collaboration with EN-MME and ABP-FPS
In collaboration with EN-MME and ABP-FPS
All movement and 'cloche' mechanics
f production by Q2

BTV in front of proton dump								
Project Number Permanent Installation								
HST 1 No Q1 2016								
Status								

Interface and test to be done

Use of available spare BTV AD/BASE type (pneumatic)


Done

Done

Done

Validation of r

3D view of BTV_SF in the 4 rings of the BOOSTER

Pneumatic BTV
AD/Base type
will be used for
the BTV dump
of the HST

Special Rad Hard ThermoFisher cameras (CID8726DX7) and dedicated cabling have been received for the L4T and the HST installation.

Conclusion

- Two WUs completed during LS1
- HST: on time Part 1 Q4 2015 & Part 2 Q1 2016
- BLMs & BTMS: A large cabling effort for YETS 16-17
- H⁻ injection: on time for Linac4 connection
- BWS: on the critical path
- Other BI Work Units: No showstopper
- Can LIU provide a wishlist of monitors which might be installed before LS2?

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

Cost Breakdown

LUL DOD	Budget			_								'	TOTAL LIU
LIU-PSB	Code	Section	Description	Туре	2011	2012	2013	2014	2015	2016	2017	2018	(kCHF)
PSB BLM System w/ IC in L2 sections			LIU-PSB BLM Upgrades	Ring - L2 section			127						127
PSB BLM System w/ FIC in L3 sections		<u> </u>		Ring - L3 section				11	30	123			164
BLM for Extraction line w/ IC	64020	BL		Extraction					70	80			150
BLMs for H- injection		<u> </u>		BI line and H- injection				3	40	48			91
Fast BLMs at injection dump		1		H- injection					100	37			137
New Orbit System				Cables in LS2		25	210	0	10	78	77	350	750
Watchdog (BR8.TMD)		<u> </u>	DCD DU 8 DCT	4 Monitors		16	13	0	19	50	50	50	
DCCT Upgrade	64021	PI	LIU-PSB PU & BCT Upgrades			9	15	20	50	10	10		114
BTP Line Inductive Pus		1			10	131	103	20					264
Wideband PU for BTP Line		<u> </u>	1						35	40			75
Screens at extraction BT.MTV10+30					9	8	11	4	45			7	84
H0/H- Meas at injection dump		1		H- injection				10	31	9			50
BTV screen at stripping foil	64022	PM	LIU-PSB Profile	H- injection		14	3	48	13	32			110
New tank for BI.MTV30	64022	Plvi	Measurement	H- injection			3	4	33			20	60
T by T profile at injection		<u> </u>	Upgrades	Based on fast SEM readout					10	90	20	15	135
BI.SMV position plates				H- injection				0	40	10			50
			LIU-PSB										
BWS Upgrade	64023	BL	Wirescanner									'	
		1	Upgrade					12	100	548	200	110	970
	64025	<u> </u>		H0/H- monitor				0	10				10
Half Sector test		BL+PM		Screen + camera system				27	40	24			91
				Stand & diamond BLMs				0	5				5
				TOTAL LIU (kCHF)	19	203	485	159	681	1179	357	552	3635