
VirtualisationVirtualisation

Summer student lecture 2008

Håvard Bjerke

CERN openlab



Virtualisation is old...Virtualisation is old...

● IBM mainframes in the '60s supported it

● Then PCs became commodity
– Commodity computers became cheaper

– Cheap computers became fast

– PC architecture became de facto

● Result: Virtualisation was forgotten
– Efficient virtualisation became hard



The resurrectionThe resurrection

● Resurrection
– VMWare and a few other vendors
– Made virtualisation feasible on x86, but 

relatively inefficient

● Revolution
– Xen: Para-virtualisation
– Efficient: close to native performance
– Forget MS Windows – since Linux is open, 

we can hack it to support para-virtualisation



● Virtual machines
● Benefits of virtualisation
● Computer architecture

– Memory management
– Privilege separation
– Interrupts

● Hardware Virtualisation
● Para-virtualisation
● The future

OverviewOverview



Virtual MachinesVirtual Machines

● Software level
– Example: Java
– Offers software 

compatibility 
across platforms

● Hardware level
– Example: VMWare
– Multiple OS 

instances on a 
single physical 
machine



Important ConceptsImportant Concepts

● Encapsulation
– The Virtual Machine Monitor (VMM) 
encapsulates the VM

– i.e. it knows everything that's happening 
inside the VM

– It can control and optimize execution of the 
VM

● Isolation
– The execution of one VM domain should not 

adversely affect execution of another 
domain



● Stack abstraction example: 
The OSI model

● Each layer is independent 
and can be implemented 
differently by different 
vendors

Stack AbstractionStack Abstraction

Network

Data link

Physical

Presentation

Session

Transport

Application



Abstraction vs VirtualisationAbstraction vs Virtualisation

● Abstraction
– TCP/IP stack
– Replaceable layers
– But: Friction 

between layers

TCP

IPv4

LAN

● Virtualisation
– Virtual Private 

Networking (VPN)

TCP

IPv4

VPN

ADSL



Abstraction vs VirtualisationAbstraction vs Virtualisation

● Computer 
abstraction layers

● Computer 
virtualisation

TCP

IP

Ethernet

User apps

OS

Hardware

User apps

OS

Virtual hardware

Hardware



Benefits of HW virtualisationBenefits of HW virtualisation
● General application:

– Server consolidation
● Specific for shared computing 

infrastructure, e.g. Grid and HPC:
– Software flexibility

● Let each user manage their own OS
● And satisfy their own software dependencies

– Flexible allocation of SMP and multi-core 
resources

– Secure isolation between users
– Migration between nodes
– Checkpointing
– Time sharing, scavenging of idle resources



How?How?

● Difficult engineering task
● Several aspects of hardware need to be 

virtualised
– CPU
– Memory management

● Virtual memory
● Page directories and tables
● Legacy memory modes

– Segmentation
– Real mode

● Physical memory
– I/O



Computer architectureComputer architecture

● Commodity architectures: Intel-32, 

Intel-64, IA-64

● Virtual memory

● Translation Lookaside buffer

● Privilege separation

● Interrupts and exceptions



Virtual memoryVirtual memory

● Simplifies memory management for 

application programmers
– Single flat address space per process

– Memory management is handled by the 

kernel
● Mapping to physical memory

● Protection

● Allows overcommit by swapping



Page

Page
table

Virtual memoryVirtual memory

Directory index

Global
directory

Global
directory
pointer

0n

+

+

+

Table index Offset

Physical
memory

Virtual address



Translation Lookaside BufferTranslation Lookaside Buffer

● Accelerates the translation from virtual 
address to physical address

● Implemented on-die
– very low latency

● Caches only a subset of mappings
– On x86 the scope of the whole buffer is only 

valid for one process: Expensive flush 
necessary each process switch

– IA-64 tags entries to make each entry valid 
process-wise



Translation Lookaside BufferTranslation Lookaside Buffer

OffsetVirtual page number

Virtual page number

OffsetPhysical page number

Physical page number

VRN

RID

RID

Region registers



Protection ringsProtection rings

● Protect kernel 
from faulty or 
malicious code

● Protection of
– Privileged state
– Privileged 

instructions
– Privileged pages or 

segments

KernelKernelKernelKernel

User



Kernel entryKernel entry

● From ring 3 to ring 0 – From User space 

to Kernel space

● System calls

● Interrupt Service Routines

● Device access



Interrupts and exceptionsInterrupts and exceptions

● Kernel entry
– Exceptions

● General protection fault
● Segmentation fault
● Page fault
● Divide-by-zero

– External interrupts
● Keyboard
● DMA finished
● Packet on network
● Timer



Interrupts and exceptionsInterrupts and exceptions

Interruption vector
table

Interrupt vector

External interrupt

CPUPIC

I/O
device

Interrupt
Service
Routine



ProcessesProcesses

● Multitasking

Process A Switch

Timer
interrupt

Process BSwitch

Timer
interrupt

Process A

Ring 3 Ring 0 Ring 3 Ring 0 Ring 3



Hardware VirtualisationHardware Virtualisation



Hardware VirtualisationHardware Virtualisation

Physical hardware

Host OS kernel VMM

User apps

Guest OS Guest OS

Ring 0

Ring 3
User apps

User apps

● The Guest OS 
must think it is 
running on a real 
machine

● What happens if 
it is not run in 
ring 0?

● Need to intercept 
or remove some 
of the guest OS's 
operations



Hardware VirtualisationHardware Virtualisation

● Three main approaches:
– Interpretation (slow)

– Binary patching or translation (faster)
● Privileged operations

● Privilege-sensitive operations

● At runtime (VMWare) or compile-time (L4Ka 

Afterburning)

– Source patching (Xen para-virtualisation) 

(fastest)



Privileged operationsPrivileged operations

● The guest OS 
must think that it 
is privileged

Host OS

CPU

Privop

Ring 0

Ring > 0

VMM

CPU

Privop

Exception

Guest OS

Host OS

CPU

Privop

Exception

User app

Notification



Privilege-sensitive operationsPrivilege-sensitive operations

● Operations that are not protected, but
– Access privileged state or
– Whose results depend on CPL

Host OS

CPU

Privsens

Ring 0

Ring > 0

VMM

CPU

Privsens

Guest OS



Para-virtualisationPara-virtualisation

● Replace sensitive operations with calls 
to the Hypervisor - hypercalls

Physical hardware

Hypervisor

Guest OS Guest OS
Ring 1

Ring 0

User apps
Ring 3

User apps

Ring 0

Ring > 0

Hypervisor

Virtual CPU

Hypercall

Guest OS



Xen memory managementXen memory management

● Page table updates through hypercalls
– VMs use the same page table structures as 

the native MMU
– Pages are marked read-only by the VMM

● Any write by VM will fault to VMM
● Efficient read by VM
● Costly exit to VMM on page fault

● Multiple updates bundled



Xen memory managementXen memory management

● x86 
– Direct mapping between physical and 

virtual memory space
● IA-64

– Logically separated address spaces using 
RIDs

– Physical memory space has its own RID



Xen memory managementXen memory management
Native application virtual address

xyz PT vk

VM application virtual address

xyz PT vk

P
h
y
sica

l a
d
d
re

ss sp
a
ce

VM isolated
address
space

Page table updates constrained
within isolated physical memory



I/O virtualisationI/O virtualisation

● Protect I/O ranges of disk access, NICs, 
etc.
– We don't want different VMs to write to the 

same device
– Isolation dictates that a VM shouldn't be 

allowed to read another VM's volumes
● Solutions

– Direct assignment: assign the whole device 
to a VM

– Multiplexing: allows VMs to share the same 
device



Device multiplexing - XenDevice multiplexing - Xen

Control
domain

Unprivileged
domain

Unprivileged
domain

VMM

Hardware

PVM
driver

PVM
driver

Native
driver

● Context 
switch 
needed on 
each I/O 
operation



The FutureThe Future

● Full hardware virtualisation without 
performance loss is not possible with 
conventional x86 architecture

● Extra facilities are needed in the 
hardware



Vanderpool (VT)Vanderpool (VT)

● X86: “VTx”
● IA-64: “VTi”
● Already mainstream

0 Guest kernel

1

2

3 User apps

0 Hypervisor

1

2

3 Control

VMX Nonroot VMX Root

VMEXIT

VMENTRY



Extended Page TablesExtended Page Tables

● Aka “Nested Page Tables”
● A virtual address in a VM's address 

space resides in one of the VMM's 
pages!

● -> all of the VM's page table 
datastructures reside in the VMM's 
pages

● Eliminates VMEXIT, but:



Extended Page TablesExtended Page Tables

PD

PD

PT

Page

PagePT

VMM

VM

Worst-case scenario!



Extended Page TablesExtended Page Tables

● VMX CR3 register points to VM's page 
directory
– No VMEXIT needed on CR3 access or page 

fault

EPTPT

VM CR3

VM 
virtual 
address

VM 
machine 
address

EPT pointer

VMM 
physical
address



VT-dVT-d

● Device addresses protected by 
hardware
– Allocated to VMs – protection domains

● DMA interrupts are assigned to the 
corresponding domain's protection 
domain

● The DMA's page table walk is assigned 
to the VM's page tables


	Slide 1
	Slide 2
	Slide 3
	Overview
	VM
	Slide 6
	Slide 7
	AvsV
	Slide 9
	Benefits
	Slide 11
	Comparch
	Slide 13
	Virtual memory
	Slide 15
	TLB
	Rings
	kernel entry
	Interrupts
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	VT
	Slide 35
	Slide 36
	Slide 37
	Slide 38

