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Virtualisation is old...Virtualisation is old...

● IBM mainframes in the '60s supported it

● Then PCs became commodity
– Commodity computers became cheaper

– Cheap computers became fast

– PC architecture became de facto

● Result: Virtualisation was forgotten
– Efficient virtualisation became hard



The resurrectionThe resurrection

● Resurrection
– VMWare and a few other vendors
– Made virtualisation feasible on x86, but 

relatively inefficient

● Revolution
– Xen: Para-virtualisation
– Efficient: close to native performance
– Forget MS Windows – since Linux is open, 

we can hack it to support para-virtualisation



● Virtual machines
● Benefits of virtualisation
● Computer architecture

– Memory management
– Privilege separation
– Interrupts

● Hardware Virtualisation
● Para-virtualisation
● The future

OverviewOverview



Virtual MachinesVirtual Machines

● Software level
– Example: Java
– Offers software 

compatibility 
across platforms

● Hardware level
– Example: VMWare
– Multiple OS 

instances on a 
single physical 
machine



Important ConceptsImportant Concepts

● Encapsulation
– The Virtual Machine Monitor (VMM) 
encapsulates the VM

– i.e. it knows everything that's happening 
inside the VM

– It can control and optimize execution of the 
VM

● Isolation
– The execution of one VM domain should not 

adversely affect execution of another 
domain



● Stack abstraction example: 
The OSI model

● Each layer is independent 
and can be implemented 
differently by different 
vendors
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Abstraction vs VirtualisationAbstraction vs Virtualisation

● Abstraction
– TCP/IP stack
– Replaceable layers
– But: Friction 

between layers

TCP

IPv4

LAN

● Virtualisation
– Virtual Private 

Networking (VPN)
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Abstraction vs VirtualisationAbstraction vs Virtualisation

● Computer 
abstraction layers

● Computer 
virtualisation
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Benefits of HW virtualisationBenefits of HW virtualisation
● General application:

– Server consolidation
● Specific for shared computing 

infrastructure, e.g. Grid and HPC:
– Software flexibility

● Let each user manage their own OS
● And satisfy their own software dependencies

– Flexible allocation of SMP and multi-core 
resources

– Secure isolation between users
– Migration between nodes
– Checkpointing
– Time sharing, scavenging of idle resources



How?How?

● Difficult engineering task
● Several aspects of hardware need to be 

virtualised
– CPU
– Memory management

● Virtual memory
● Page directories and tables
● Legacy memory modes

– Segmentation
– Real mode

● Physical memory
– I/O



Computer architectureComputer architecture

● Commodity architectures: Intel-32, 

Intel-64, IA-64

● Virtual memory

● Translation Lookaside buffer

● Privilege separation

● Interrupts and exceptions



Virtual memoryVirtual memory

● Simplifies memory management for 

application programmers
– Single flat address space per process

– Memory management is handled by the 

kernel
● Mapping to physical memory

● Protection

● Allows overcommit by swapping
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Translation Lookaside BufferTranslation Lookaside Buffer

● Accelerates the translation from virtual 
address to physical address

● Implemented on-die
– very low latency

● Caches only a subset of mappings
– On x86 the scope of the whole buffer is only 

valid for one process: Expensive flush 
necessary each process switch

– IA-64 tags entries to make each entry valid 
process-wise



Translation Lookaside BufferTranslation Lookaside Buffer
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Protection ringsProtection rings

● Protect kernel 
from faulty or 
malicious code

● Protection of
– Privileged state
– Privileged 

instructions
– Privileged pages or 

segments

KernelKernelKernelKernel

User



Kernel entryKernel entry

● From ring 3 to ring 0 – From User space 

to Kernel space

● System calls

● Interrupt Service Routines

● Device access



Interrupts and exceptionsInterrupts and exceptions

● Kernel entry
– Exceptions

● General protection fault
● Segmentation fault
● Page fault
● Divide-by-zero

– External interrupts
● Keyboard
● DMA finished
● Packet on network
● Timer



Interrupts and exceptionsInterrupts and exceptions
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ProcessesProcesses

● Multitasking

Process A Switch

Timer
interrupt

Process BSwitch

Timer
interrupt

Process A

Ring 3 Ring 0 Ring 3 Ring 0 Ring 3



Hardware VirtualisationHardware Virtualisation



Hardware VirtualisationHardware Virtualisation

Physical hardware

Host OS kernel VMM

User apps

Guest OS Guest OS

Ring 0

Ring 3
User apps

User apps

● The Guest OS 
must think it is 
running on a real 
machine

● What happens if 
it is not run in 
ring 0?

● Need to intercept 
or remove some 
of the guest OS's 
operations



Hardware VirtualisationHardware Virtualisation

● Three main approaches:
– Interpretation (slow)

– Binary patching or translation (faster)
● Privileged operations

● Privilege-sensitive operations

● At runtime (VMWare) or compile-time (L4Ka 

Afterburning)

– Source patching (Xen para-virtualisation) 

(fastest)



Privileged operationsPrivileged operations

● The guest OS 
must think that it 
is privileged
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Privilege-sensitive operationsPrivilege-sensitive operations

● Operations that are not protected, but
– Access privileged state or
– Whose results depend on CPL
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Para-virtualisationPara-virtualisation

● Replace sensitive operations with calls 
to the Hypervisor - hypercalls
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Xen memory managementXen memory management

● Page table updates through hypercalls
– VMs use the same page table structures as 

the native MMU
– Pages are marked read-only by the VMM

● Any write by VM will fault to VMM
● Efficient read by VM
● Costly exit to VMM on page fault

● Multiple updates bundled



Xen memory managementXen memory management

● x86 
– Direct mapping between physical and 

virtual memory space
● IA-64

– Logically separated address spaces using 
RIDs

– Physical memory space has its own RID



Xen memory managementXen memory management
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I/O virtualisationI/O virtualisation

● Protect I/O ranges of disk access, NICs, 
etc.
– We don't want different VMs to write to the 

same device
– Isolation dictates that a VM shouldn't be 

allowed to read another VM's volumes
● Solutions

– Direct assignment: assign the whole device 
to a VM

– Multiplexing: allows VMs to share the same 
device



Device multiplexing - XenDevice multiplexing - Xen
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The FutureThe Future

● Full hardware virtualisation without 
performance loss is not possible with 
conventional x86 architecture

● Extra facilities are needed in the 
hardware



Vanderpool (VT)Vanderpool (VT)

● X86: “VTx”
● IA-64: “VTi”
● Already mainstream
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Extended Page TablesExtended Page Tables

● Aka “Nested Page Tables”
● A virtual address in a VM's address 

space resides in one of the VMM's 
pages!

● -> all of the VM's page table 
datastructures reside in the VMM's 
pages

● Eliminates VMEXIT, but:



Extended Page TablesExtended Page Tables
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Extended Page TablesExtended Page Tables

● VMX CR3 register points to VM's page 
directory
– No VMEXIT needed on CR3 access or page 

fault
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VT-dVT-d

● Device addresses protected by 
hardware
– Allocated to VMs – protection domains

● DMA interrupts are assigned to the 
corresponding domain's protection 
domain

● The DMA's page table walk is assigned 
to the VM's page tables
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