
Compilers

J.M. Dana

Jose.Dana@cern.ch



DANGER!
Theoretical content approaching!

Based on last year presentation by Lori Pollock

CERN openlab Summer Student Lectures – 2008 2



Why are compilers important?

 Why should I care about compilers? The 

compiler is just a tool… 

 The compiler is NOT just a tool

 It will “explain” to the computer what you are 

trying to do… 

 Knowledge of the compilation process can 

help programmers write better code 

 Good to know what the compiler can do for 

you (and what it can’t)

CERN openlab Summer Student Lectures – 2008 3

const vs. #define



What is a compiler?

CERN openlab Summer Student Lectures – 2008 4

Source code

Object or 

Intermediate 

code

Compiler



Basic functional overview

CERN openlab Summer Student Lectures – 2008 5

Target-Independent 

Optimizer

Scanner

Parser

Semantic Analyzer

Target Code 

Generator

Target-Dependent 

Optimizer

Tokens

Abstract syntax tree

Annotated abstract syntax tree

And symbol table

Intermediate representation

Assembly, assembly-like IR, 

or machine code

Improved object Code

Source program text



Scanning or Lexical Analysis

 Partition of the text into tokens (smallest meaningful 

unit)

 Remove comments, white spaces, etc.

 Track line numbers

 The scanner is basically a recognizer of a regular 

language 

CERN openlab Summer Student Lectures – 2008 6

sum := sum+data
id01 assign 

id01 plus id02;
Scanner



Parsing or Syntactic Analysis

 Build Abstract Syntax Tree (AST)

 The parser is a recognizer of a context-free 

language

CERN openlab Summer Student Lectures – 2008 7

id01 assign id01 

plus id02;
Parser

assign

id01

id01 id02

plus



Semantic Analysis

 Symbol Table creation (debugging)

 Class inheritance hierarchy

 Type checking

 Static semantic checking (def before use)

CERN openlab Summer Student Lectures – 2008 8

Semantic 

Analyzer

assign

id01

id01 id02

plus

assign

id01

(int)

id01

(int)

id02

(int)

plus

Type errors
Symbol 

table

Class 

hierarchy



Target-independent optimization

 Local

 Remove dead code (result never used)

 Remove redundant expression evaluations

 Propagate and evaluate constants

 Global

 Data flow analysis over a control flow graph

 Code transformation if safe and profitable

 Interprocedural

 Interprocedural analysis over a call graph

 Interprocedural constant propagation

 Inlining and global optimization

CERN openlab Summer Student Lectures – 2008 9



Examples local optimization (1)

 Elimination of redundant loads and stores

CERN openlab Summer Student Lectures – 2008 10

r2 ← r1 + 5

i ← r2

r3 ← i

r3 ← r3 x 3

r2 ← r1 + 5

i ← r2

r3 ← r2 x 3

 Constant folding

r2 ← 3 x 2 r2 ← 6



Examples local optimization (2)

 Constant propagation

CERN openlab Summer Student Lectures – 2008 11

r2 ← 4

r3 ← r1 + r2

r2 ← …

r3 ← r1 + 4

r2 ← …

 Common subexpression elimination

r2 ← r1 x 5

r2 ← r2 + r3

r3 ← r1 x 5

r4 ← r1 x 5

r2 ← r4 + r3

r3 ← r4



Interprocedural optimization

CERN openlab Summer Student Lectures – 2008 12

method B() {call A(b,10)}

method C() {call A(c,10)}

method A(int x, int y) {

…

z=y+5

if(z<10) {

return  0

} else {

return 1

}

}

method A(int x, int y){

return 1   

}



What affects the optimizer’s ability?

 Pointers: lack of knowledge of which location 

is being referenced

 Calling functions through function pointers

 Aliasing

 Polymorphism

 Branching

 …

CERN openlab Summer Student Lectures – 2008 13



Optimizing for cache (1)

 Goals:

 Optimize for spatial locality: prefetching of data in 

same cache line

 Optimize for temporal locality: Re-use data which 

has been brought into cache as much as 

possible

 The programmer can help:

 Good use of data structures

 Memory alignment when neccesary

CERN openlab Summer Student Lectures – 2008 14



Optimizing for cache (2)

CERN openlab Summer Student Lectures – 2008 15

for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);

imageB[i]=loadimg(fileB[i]);

a1[i]=funcA(imageA[i]);

a2[i]=funcB(imageA[i]);

b1[i]=funcA(imageB[i]);

b2[i]=funcB(imageB[i]);

}

for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);

a1[i]=funcA(imageA[i]);

a2[i]=funcB(imageA[i]);

imageB[i]=loadimg(fileB[i]);

b1[i]=funcA(imageB[i]);

b2[i]=funcB(imageB[i]);

}



Avoid RAW dependencies

CERN openlab Summer Student Lectures – 2008 16

a=b+c

d=b+a

e=b+d

a=b+c

d=2*b+c

e=3*b+c



Loop unrolling

CERN openlab Summer Student Lectures – 2008 17

for(i=0;i<100;i++) {

a[i]=a[i]+b[i];

c[i]=a[i]*2;

}

for(i=0;i<99;i+=2) {

a[i]=a[i]+b[i];

c[i]=a[i]*2;

a[i+1]=a[i+1]+b[i+1];

c[i+1]=a[i+1]*2;

}



Function inlining

CERN openlab Summer Student Lectures – 2008 18

inline int max (int a, int b) {

if (a > b)

return a;

else

return b;

}

a=max(x,y);

a = (x > y ? x : y);



Memory alignment

CERN openlab Summer Student Lectures – 2008 19

matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));

for(i=0;i<height;i++)

matrix[i]=(unsigned char*)malloc(width*sizeof(unsigned char));

matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));

matrix[0]=(unsigned char*)malloc(height*width*sizeof(unsigned char));

for(i=1;i<height;i++)

matrix[i]=matrix[i-1]+width;



Data structure alignment

CERN openlab Summer Student Lectures – 2008 20

struct MixedData {

char Data1;

short Data2;

int Data3;

char Data4;

};

struct MixedData {

char Data1;

char Padding0[1];

short Data2;

int Data3;  

char Data4;

char Padding1[3];

};



Target-dependent optimization

 SIMD instructions (MMX, SSE, SSE2, etc.)

 32 vs. 64 bits

 Specific registers

 Predicated operations

 In-order vs. out-of-order executions

 … and any architecture specific property

CERN openlab Summer Student Lectures – 2008 21



Profile-guided optimization

 Compilers are far from being perfect

 PGO analyzes your software and chooses 

the “best” optimization techniques for it

 gcc (from 4.1)

 -fprofile-generate + execution + -fprofile-use

 icc

 -prof-gen + execution + -prof-use

CERN openlab Summer Student Lectures – 2008 22



Q & A

CERN openlab Summer Student Lectures – 2008 23


