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DANGER!
Theoretical content approaching!

Based on last year presentation by Lori Pollock
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Why are compilers important?

 Why should I care about compilers? The 

compiler is just a tool… 

 The compiler is NOT just a tool

 It will “explain” to the computer what you are 

trying to do… 

 Knowledge of the compilation process can 

help programmers write better code 

 Good to know what the compiler can do for 

you (and what it can’t)
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const vs. #define



What is a compiler?
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Source code

Object or 

Intermediate 

code

Compiler



Basic functional overview
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Scanning or Lexical Analysis

 Partition of the text into tokens (smallest meaningful 

unit)

 Remove comments, white spaces, etc.

 Track line numbers

 The scanner is basically a recognizer of a regular 

language 
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sum := sum+data
id01 assign 

id01 plus id02;
Scanner



Parsing or Syntactic Analysis

 Build Abstract Syntax Tree (AST)

 The parser is a recognizer of a context-free 

language
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id01 assign id01 

plus id02;
Parser

assign

id01

id01 id02

plus



Semantic Analysis

 Symbol Table creation (debugging)

 Class inheritance hierarchy

 Type checking

 Static semantic checking (def before use)
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Semantic 
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Target-independent optimization

 Local

 Remove dead code (result never used)

 Remove redundant expression evaluations

 Propagate and evaluate constants

 Global

 Data flow analysis over a control flow graph

 Code transformation if safe and profitable

 Interprocedural

 Interprocedural analysis over a call graph

 Interprocedural constant propagation

 Inlining and global optimization
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Examples local optimization (1)

 Elimination of redundant loads and stores
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r2 ← r1 + 5

i ← r2

r3 ← i

r3 ← r3 x 3

r2 ← r1 + 5

i ← r2

r3 ← r2 x 3

 Constant folding

r2 ← 3 x 2 r2 ← 6



Examples local optimization (2)

 Constant propagation
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r2 ← 4

r3 ← r1 + r2

r2 ← …

r3 ← r1 + 4

r2 ← …

 Common subexpression elimination

r2 ← r1 x 5

r2 ← r2 + r3

r3 ← r1 x 5

r4 ← r1 x 5

r2 ← r4 + r3

r3 ← r4



Interprocedural optimization
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method B() {call A(b,10)}

method C() {call A(c,10)}

method A(int x, int y) {

…

z=y+5

if(z<10) {

return  0

} else {

return 1

}

}

method A(int x, int y){

return 1   

}



What affects the optimizer’s ability?

 Pointers: lack of knowledge of which location 

is being referenced

 Calling functions through function pointers

 Aliasing

 Polymorphism

 Branching

 …
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Optimizing for cache (1)

 Goals:

 Optimize for spatial locality: prefetching of data in 

same cache line

 Optimize for temporal locality: Re-use data which 

has been brought into cache as much as 

possible

 The programmer can help:

 Good use of data structures

 Memory alignment when neccesary
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Optimizing for cache (2)
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for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);

imageB[i]=loadimg(fileB[i]);

a1[i]=funcA(imageA[i]);

a2[i]=funcB(imageA[i]);

b1[i]=funcA(imageB[i]);

b2[i]=funcB(imageB[i]);

}

for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);

a1[i]=funcA(imageA[i]);

a2[i]=funcB(imageA[i]);

imageB[i]=loadimg(fileB[i]);

b1[i]=funcA(imageB[i]);

b2[i]=funcB(imageB[i]);

}



Avoid RAW dependencies
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a=b+c

d=b+a

e=b+d

a=b+c

d=2*b+c

e=3*b+c



Loop unrolling
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for(i=0;i<100;i++) {

a[i]=a[i]+b[i];

c[i]=a[i]*2;

}

for(i=0;i<99;i+=2) {

a[i]=a[i]+b[i];

c[i]=a[i]*2;

a[i+1]=a[i+1]+b[i+1];

c[i+1]=a[i+1]*2;

}



Function inlining

CERN openlab Summer Student Lectures – 2008 18

inline int max (int a, int b) {

if (a > b)

return a;

else

return b;

}

a=max(x,y);

a = (x > y ? x : y);



Memory alignment
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matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));

for(i=0;i<height;i++)

matrix[i]=(unsigned char*)malloc(width*sizeof(unsigned char));

matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));

matrix[0]=(unsigned char*)malloc(height*width*sizeof(unsigned char));

for(i=1;i<height;i++)

matrix[i]=matrix[i-1]+width;



Data structure alignment
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struct MixedData {

char Data1;

short Data2;

int Data3;

char Data4;

};

struct MixedData {

char Data1;

char Padding0[1];

short Data2;

int Data3;  

char Data4;

char Padding1[3];

};



Target-dependent optimization

 SIMD instructions (MMX, SSE, SSE2, etc.)

 32 vs. 64 bits

 Specific registers

 Predicated operations

 In-order vs. out-of-order executions

 … and any architecture specific property
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Profile-guided optimization

 Compilers are far from being perfect

 PGO analyzes your software and chooses 

the “best” optimization techniques for it

 gcc (from 4.1)

 -fprofile-generate + execution + -fprofile-use

 icc

 -prof-gen + execution + -prof-use
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Q & A
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