
Compilers

J.M. Dana

Jose.Dana@cern.ch

DANGER!
Theoretical content approaching!

Based on last year presentation by Lori Pollock

CERN openlab Summer Student Lectures – 2008 2

Why are compilers important?

 Why should I care about compilers? The

compiler is just a tool…

 The compiler is NOT just a tool

 It will “explain” to the computer what you are

trying to do…

 Knowledge of the compilation process can

help programmers write better code

 Good to know what the compiler can do for

you (and what it can’t)

CERN openlab Summer Student Lectures – 2008 3

const vs. #define

What is a compiler?

CERN openlab Summer Student Lectures – 2008 4

Source code

Object or

Intermediate

code

Compiler

Basic functional overview

CERN openlab Summer Student Lectures – 2008 5

Target-Independent

Optimizer

Scanner

Parser

Semantic Analyzer

Target Code

Generator

Target-Dependent

Optimizer

Tokens

Abstract syntax tree

Annotated abstract syntax tree

And symbol table

Intermediate representation

Assembly, assembly-like IR,

or machine code

Improved object Code

Source program text

Scanning or Lexical Analysis

 Partition of the text into tokens (smallest meaningful

unit)

 Remove comments, white spaces, etc.

 Track line numbers

 The scanner is basically a recognizer of a regular

language

CERN openlab Summer Student Lectures – 2008 6

sum := sum+data
id01 assign

id01 plus id02;
Scanner

Parsing or Syntactic Analysis

 Build Abstract Syntax Tree (AST)

 The parser is a recognizer of a context-free

language

CERN openlab Summer Student Lectures – 2008 7

id01 assign id01

plus id02;
Parser

assign

id01

id01 id02

plus

Semantic Analysis

 Symbol Table creation (debugging)

 Class inheritance hierarchy

 Type checking

 Static semantic checking (def before use)

CERN openlab Summer Student Lectures – 2008 8

Semantic

Analyzer

assign

id01

id01 id02

plus

assign

id01

(int)

id01

(int)

id02

(int)

plus

Type errors
Symbol

table

Class

hierarchy

Target-independent optimization

 Local

 Remove dead code (result never used)

 Remove redundant expression evaluations

 Propagate and evaluate constants

 Global

 Data flow analysis over a control flow graph

 Code transformation if safe and profitable

 Interprocedural

 Interprocedural analysis over a call graph

 Interprocedural constant propagation

 Inlining and global optimization

CERN openlab Summer Student Lectures – 2008 9

Examples local optimization (1)

 Elimination of redundant loads and stores

CERN openlab Summer Student Lectures – 2008 10

r2 ← r1 + 5

i ← r2

r3 ← i

r3 ← r3 x 3

r2 ← r1 + 5

i ← r2

r3 ← r2 x 3

 Constant folding

r2 ← 3 x 2 r2 ← 6

Examples local optimization (2)

 Constant propagation

CERN openlab Summer Student Lectures – 2008 11

r2 ← 4

r3 ← r1 + r2

r2 ← …

r3 ← r1 + 4

r2 ← …

 Common subexpression elimination

r2 ← r1 x 5

r2 ← r2 + r3

r3 ← r1 x 5

r4 ← r1 x 5

r2 ← r4 + r3

r3 ← r4

Interprocedural optimization

CERN openlab Summer Student Lectures – 2008 12

method B() {call A(b,10)}

method C() {call A(c,10)}

method A(int x, int y) {

…

z=y+5

if(z<10) {

return 0

} else {

return 1

}

}

method A(int x, int y){

return 1

}

What affects the optimizer’s ability?

 Pointers: lack of knowledge of which location

is being referenced

 Calling functions through function pointers

 Aliasing

 Polymorphism

 Branching

 …

CERN openlab Summer Student Lectures – 2008 13

Optimizing for cache (1)

 Goals:

 Optimize for spatial locality: prefetching of data in

same cache line

 Optimize for temporal locality: Re-use data which

has been brought into cache as much as

possible

 The programmer can help:

 Good use of data structures

 Memory alignment when neccesary

CERN openlab Summer Student Lectures – 2008 14

Optimizing for cache (2)

CERN openlab Summer Student Lectures – 2008 15

for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);

imageB[i]=loadimg(fileB[i]);

a1[i]=funcA(imageA[i]);

a2[i]=funcB(imageA[i]);

b1[i]=funcA(imageB[i]);

b2[i]=funcB(imageB[i]);

}

for(i=0;i<N;i++) {

imageA[i]=loadimg(fileA[i]);

a1[i]=funcA(imageA[i]);

a2[i]=funcB(imageA[i]);

imageB[i]=loadimg(fileB[i]);

b1[i]=funcA(imageB[i]);

b2[i]=funcB(imageB[i]);

}

Avoid RAW dependencies

CERN openlab Summer Student Lectures – 2008 16

a=b+c

d=b+a

e=b+d

a=b+c

d=2*b+c

e=3*b+c

Loop unrolling

CERN openlab Summer Student Lectures – 2008 17

for(i=0;i<100;i++) {

a[i]=a[i]+b[i];

c[i]=a[i]*2;

}

for(i=0;i<99;i+=2) {

a[i]=a[i]+b[i];

c[i]=a[i]*2;

a[i+1]=a[i+1]+b[i+1];

c[i+1]=a[i+1]*2;

}

Function inlining

CERN openlab Summer Student Lectures – 2008 18

inline int max (int a, int b) {

if (a > b)

return a;

else

return b;

}

a=max(x,y);

a = (x > y ? x : y);

Memory alignment

CERN openlab Summer Student Lectures – 2008 19

matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));

for(i=0;i<height;i++)

matrix[i]=(unsigned char*)malloc(width*sizeof(unsigned char));

matrix=(unsigned char**)malloc(height*sizeof(unsigned char*));

matrix[0]=(unsigned char*)malloc(height*width*sizeof(unsigned char));

for(i=1;i<height;i++)

matrix[i]=matrix[i-1]+width;

Data structure alignment

CERN openlab Summer Student Lectures – 2008 20

struct MixedData {

char Data1;

short Data2;

int Data3;

char Data4;

};

struct MixedData {

char Data1;

char Padding0[1];

short Data2;

int Data3;

char Data4;

char Padding1[3];

};

Target-dependent optimization

 SIMD instructions (MMX, SSE, SSE2, etc.)

 32 vs. 64 bits

 Specific registers

 Predicated operations

 In-order vs. out-of-order executions

 … and any architecture specific property

CERN openlab Summer Student Lectures – 2008 21

Profile-guided optimization

 Compilers are far from being perfect

 PGO analyzes your software and chooses

the “best” optimization techniques for it

 gcc (from 4.1)

 -fprofile-generate + execution + -fprofile-use

 icc

 -prof-gen + execution + -prof-use

CERN openlab Summer Student Lectures – 2008 22

Q & A

CERN openlab Summer Student Lectures – 2008 23

