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Why worry about performance?

My arguments:
The frequency scaling we enjoyed in the past does not 
exist any longer

There are important thermal issues associated with large 
scale computing

Even when 1W processors exist!

There are important cost issues associated with large 
scale computing

Even when using “commodity equipment”
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Moore’s law

We continue to 
double the 
number of 
transistors

Latest 
consequence

Single core 
Multicore 
Manycore

The derivative 
“law” which 
stated that the 
frequency would 
also double is no 
longer true! From Wikipedia
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Evolution of CERN’s 
computing capacity

During the LEP era (1989 –
2000):

Doubling of compute 
power every year
Initiated with the move 
from mainframes to RISC 
systems

At CHEP-95:
I made the first 
recommendation to move 
to PCs

After a set of encouraging 
benchmark results

From L.Robertson
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Frequency scaling

The 7 “fat” years of frequency scaling in HEP

From the Pentium Pro in 1996: 150 MHz

To the Pentium 4 in 2003: 3.8 GHz (~25x)

Since then
Core 2 systems:

~3 GHz
Multi-core

From A. Nowak
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The Power Wall

For example, the CERN Computer Centre can supply 
2.5MW of electric power

Plus 2MW to remove the corresponding heat!

Spread over a complex infrastructure:
CPU servers; Disk servers
Tape servers + robotic equipment
Database servers
Infrastructure servers.
Network switches and routers

This limit will be reached in 2009!



Sverre Jarp - CERN

Computer Architecture and Performance Tuning

8

Let’s look at some processor details!
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Von Neumann architecture

From Wikipedia:
The von Neumann 
architecture is a computer 
design model that uses a 
processing unit and a single 
separate storage structure to 
hold both instructions and 
data.

It can be viewed as an entity 
into which one streams 
instructions and data in order 
to produce results

Our goal is to produce results 
as fast as possible

DataInstructions

Results
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Simple processor layout

A simple processor with 
four key components:

Control Logic
Instruction Counter
Program Status Word

Register File
Data Transfer Unit

Data bus
Address bus

Arithmetic Logic Unit 

R1

R0

R15

Registers

IC

PSW

Control

Data 
transfer 
unit

ALU

Data

Address
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Simple server diagram

Multiple components which 
interact during the execution 
of a program:

Processors/cores
Cache

Instructions (I-cache)
Data (D-cache)

Memory bus
Memory
I/O subsystem

Network attachment
Disk subsystem

Interconnect

I/O bus

Cache

0 1
2 3

Cache

0 1
2 3

Memory

Processors
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Initial premise

To reach completion, a compute job (a process) requires the 
execution of a given number of (machine-level) instructions

We typically want the process to complete in the shortest 
possible time

This time corresponds to a given number of machine cycles

Simple example:
A program consists of (the execution of) 1010 instructions
We measure an execution time of 6 seconds on a processor 
running at 2.0 GHz
We can now compute a key value:

Cycles per Instruction (CPI)
Our result: (6 * 2 * 109) / 1010 = 1.2
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A complicated story!

We start with a concrete, real-life problem to solve
For instance, simulate the passage of elementary particles 
through matter

We write programs in high level languages
C++, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high-level code 
to machine-level code

We link in external libraries

A sophisticated processor with a complex architecture and 
even more complex micro-architecture executes the code 

In most cases, we have little clue as to the efficiency of this 
transformation process
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Seven dimensions of performance
First three dimensions:

Superscalar
Pipelining
Computational width/SIMD

Next dimension is a “pseudo” 
dimension:

Hardware multithreading

Last three dimensions:
Multiple cores
Multiple sockets
Multiple compute nodes 

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets



Sverre Jarp - CERN

Computer Architecture and Performance Tuning

15

Part 1: Opportunities for scaling 
performance inside a core

Let’s look at the first three 
dimensions

Data parallelism via
Loop/straight-line vectorization

The resources:
Superscalar: Fill the ports
Pipelined: Fill the stages
SIMD: Fill the computational width

SIMD width

Superscalar

Pipelining
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Superscalar architecture

In this simplified design, 
instructions are decoded 
serially, but dispatched 
to two ALUs.

The decoder and 
dispatcher ought to be 
able to handle two 
instructions per cycle
The ALUs can have 
identical or different 
execution capabilities

Decode

Dispatch

ALU 0 ALU 1

Results

Instruction stream

Port 0 Port 1
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Core 2 execution ports

Intel’s Core 
microarchitecture 
can execute four 
instructions in 
parallel:

17

Issue ports in the Core micro-architecture
(from Intel Manual No. 248966-016)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT

x87 FP
Add

SSE FP
Add

Integer
Shift
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Next topic: Instruction pipelining

Instructions are broken up into stages.
With a one-cycle execution latency (simplified):

With a three-cycle execution latency:

I-fetch I-decode Execute Write-back
I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
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Real-life latencies

Most integer/logic instructions have a one-cycle 
execution latency:

ADD, AND, SHL (shift left), ROR (rotate right)
Some exceptions:

IMUL (integer multiply: 3)
IDIV (integer divide: 13 – 23)

Floating-point latencies are typically multi-cycle
FADD (3), FMUL (5)

Same for both x87 and SIMD variants

Exception: FABS (absolute value: 1) 

Latencies in the Core micro-architecture
(from Intel Manual No. 248966-016)
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Latencies and serial code (1)
In serial programs, we 
typically pay the penalty of a 
multi-cycle latency during 
execution:

In this example:
Statement 2 cannot be 
started before statement 1 
has finished
Statement 3 cannot be 
started before statement 2 
has finished 

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

d = a + e;  // Statement 2

f = fabs(d);   // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Latencies and serial code (2)

Observations:
Even if the processor can fetch and decode a new 
instruction every cycle, it must wait for the previous 
result to be made available

Fortunately, the result takes a ‘bypass’, so that the write-back 
stage does not cause even further delays

The result here:
9 execution cycles are needed for three instructions!

– CPI is equal to 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Example of real-life serial code
Suffers long latencies:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0   // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3      # Prob 43% // jump if FALSE

High level C++ code 

Machine instructions 

Same 
instructions 
laid out 
according to 
latencies on 
the Core 2 
processor 

NB: Out-of-
order 
scheduling 
not taken 
into account. 
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Other causes of execution delays (1)

We already stated that the aim is to 
keep instructions and data flowing, 
so that results are generated 
optimally

First issue:
Instructions stop flowing

Typically caused by branching
There may be a branch instruction in 
every 10 machine instructions!

– Or even less
If the branch is mispredicted, we suffer 
a stall (cycles clock up, but no work 
gets done)

DataInstructions

Results
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Other causes of execution delays (2)

Second issue:
Instructions and/or data stop flowing

Instructions are not found in the I-
cache
Data is not found in the D-cache

Before execution can continue, 
instructions and data must be 
fetched from a lower level

DataInstructions

Results
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Memory Hierarchy

From CPU to 
main 
memory on a 
Core 2 uni-
processor

With 
multicore, 
memory 
bandwidth is 
shared 
between 
cores on the 
same bus

CPU
(Registers)

L1D
(32 KB)

L2
(4096 KB)

memory
(large)

32 B/c, 14 c latency

~4 B/c, ~ 100 c latency

L1I
(32 KB)

32 B/c, 3 c latency

c = cycle
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XMM registers for SSE

16 registers with 128 bits each in 64-bit mode (x86-64)

E3 E2 E1 E0

E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0Bit 127

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E016 Bytes

8 Words

4 DWords/Single

2 QWords/Double
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Four FP data flavours

Single precision
Scalar single (SS)
Packed single (PS)

Double precision
Scalar Double (SD)
Packed Double (PD)

Note that the scalar variants replace x87 in x86-64
Possibly impacting precision!

E3 E2 E1 E0

- - - E0

E1 E0

- E0
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Summary of important 
items to measure

Review of what we have 
discussed:

The total cycle count (C)
The total instruction count (I)
Derived value: CPI

Bubble count: Cycles when no 
(new instruction) execution 
occurred

Total number of executed 
branch instructions
Total number of mispredicted 
branches

Plus:
Total number of (last-level) 
cache misses
Total number of cache 
accesses
Bus occupancy

The total number of SSE 
instructions
The total number (and the 
type) of computational SSE 
instructions
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Scalable programming 
for a single core

Easiest way to fill the 
execution capabilities is to 
use vectorization

Either, vector syntax, à la 
Fortran-90

Or, loop syntax which the 
compiler can vectorize 
automatically

Or, explicit intrinsics
Not discussed further (today).

REAL U(100), V(100)

U = 0.0

U = SIN(V)

U(1:50) = V(2:100:2)

float  u[100], v[100];

for (int i = 0; i<50; i++) u[i] = 0.0;

for (i = 0; i<50; i++) u[i] = sin(v[i]);

for (int i = 0; i<50; i++) u[i] = v[i*2+1];
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Part 2: Parallel execution across 
hw-threads and cores

Next dimension is a “pseudo” 
dimension:

Hardware multithreading

Last three dimensions:
Multiple cores
Multiple sockets
Multiple compute nodes

Multiple nodes will not be 
discussed here

Our focus is scalability inside a 
node

Compute nodes

Processor cores

Sockets
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HEP programming paradigm

Event-level parallelism has been used for decades
Compute one event after the other in a single process

Advantage:
Large jobs can be split into N efficient processes, each 
responsible for processing M events

Built-in scalability

Disadvantage:
Memory must be made available to each process

With 2 – 4 GB per process
A dual-socket server with Quad-core processors

– Needs 16 – 32 GB (or more)
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What are the options?

There is currently a discussion in the community about 
the best way forwards (in a many-core world):

1) Stay with event-level parallelism (and independent 
processes)

Assume that the necessary memory remains affordable

2) Move to a fully multi-threaded paradigm
Using gross-grained (event-level?) parallelism

3) Rely on forking:
Start the first process
Fork N others
Rely on the OS to do “copy on write”, in case pages are written to 
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Programming strategies/priorities

As I see them:
Get memory usage (per process) under control

To allow higher multiprogramming level per server

Draw maximum benefit from hardware threading
Introduce coarse-grained software multithreading

To allow further scaling with large core counts

Revisit data parallel constructs at the very base
Gain performance inside each core

In all cases, use appropriate tools (pfmon/Thread Profiler, 
etc.)

To monitor detailed program behaviour
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Concluding remarks

The aim of these lectures was to help understand
Modern computer architecture
Factors that improve or degrade performance
Keeping in mind that there is not always a straight path to 
reach (all of) the available performance by our 
programming community.

In most HEP programming domains event-level 
processing will (continue to) dominate

Provided we get the memory requirements under control

Learn to be the master of the 7 hardware dimensions!
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Further reading:

“Computer Architecture: A Quantitative Approach”, J. Hennessy and D. 
Patterson, 3rd ed., Morgan Kaufmann, 2002

“Inside the Machine”, J. Stokes, Ars Technica Library, 2007

“Foundations of Multithreaded, Parallel and Distributed Programming”, G. 
R. Andrews, Addison-Wesley, 1999

“Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd

ed., Addison Wesley, 2006

“Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

“Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor 
Parallelism”, J. Reinders, O’Reilly, 1st ed., 2007
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