
Computer Architecture and
Performance Tuning

“Hunting for Performance in 7 dimensions”

Sverre Jarp
CERN

openlab
CTO

IT Dept.

CERN

Summer Student lecture - August 2008

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

2

Contents

Why worry about performance?
Review of fundamental architectural principles
Addressing performance “dimensions”
Scaling within a core

First 3 dimensions
Causes of execution delays
Performance metrics

Scaling within a node
Next set of dimensions (without detailed discussion)

Conclusions

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

3

Why worry about performance?

My arguments:
The frequency scaling we enjoyed in the past does not
exist any longer

There are important thermal issues associated with large
scale computing

Even when 1W processors exist!

There are important cost issues associated with large
scale computing

Even when using “commodity equipment”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

4

Moore’s law

We continue to
double the
number of
transistors

Latest
consequence

Single core
Multicore
Manycore

The derivative
“law” which
stated that the
frequency would
also double is no
longer true! From Wikipedia

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

5

Evolution of CERN’s
computing capacity

During the LEP era (1989 –
2000):

Doubling of compute
power every year
Initiated with the move
from mainframes to RISC
systems

At CHEP-95:
I made the first
recommendation to move
to PCs

After a set of encouraging
benchmark results

From L.Robertson

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

6

Frequency scaling

The 7 “fat” years of frequency scaling in HEP

From the Pentium Pro in 1996: 150 MHz

To the Pentium 4 in 2003: 3.8 GHz (~25x)

Since then
Core 2 systems:

~3 GHz
Multi-core

From A. Nowak

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

7

The Power Wall

For example, the CERN Computer Centre can supply
2.5MW of electric power

Plus 2MW to remove the corresponding heat!

Spread over a complex infrastructure:
CPU servers; Disk servers
Tape servers + robotic equipment
Database servers
Infrastructure servers.
Network switches and routers

This limit will be reached in 2009!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

8

Let’s look at some processor details!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

9

Von Neumann architecture

From Wikipedia:
The von Neumann
architecture is a computer
design model that uses a
processing unit and a single
separate storage structure to
hold both instructions and
data.

It can be viewed as an entity
into which one streams
instructions and data in order
to produce results

Our goal is to produce results
as fast as possible

DataInstructions

Results

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

10

Simple processor layout

A simple processor with
four key components:

Control Logic
Instruction Counter
Program Status Word

Register File
Data Transfer Unit

Data bus
Address bus

Arithmetic Logic Unit

R1

R0

R15

Registers

IC

PSW

Control

Data
transfer
unit

ALU

Data

Address

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

11

Simple server diagram

Multiple components which
interact during the execution
of a program:

Processors/cores
Cache

Instructions (I-cache)
Data (D-cache)

Memory bus
Memory
I/O subsystem

Network attachment
Disk subsystem

Interconnect

I/O bus

Cache

0 1
2 3

Cache

0 1
2 3

Memory

Processors

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

12

Initial premise

To reach completion, a compute job (a process) requires the
execution of a given number of (machine-level) instructions

We typically want the process to complete in the shortest
possible time

This time corresponds to a given number of machine cycles

Simple example:
A program consists of (the execution of) 1010 instructions
We measure an execution time of 6 seconds on a processor
running at 2.0 GHz
We can now compute a key value:

Cycles per Instruction (CPI)
Our result: (6 * 2 * 109) / 1010 = 1.2

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

13

A complicated story!

We start with a concrete, real-life problem to solve
For instance, simulate the passage of elementary particles
through matter

We write programs in high level languages
C++, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high-level code
to machine-level code

We link in external libraries

A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

In most cases, we have little clue as to the efficiency of this
transformation process

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

14

Seven dimensions of performance
First three dimensions:

Superscalar
Pipelining
Computational width/SIMD

Next dimension is a “pseudo”
dimension:

Hardware multithreading

Last three dimensions:
Multiple cores
Multiple sockets
Multiple compute nodes

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

15

Part 1: Opportunities for scaling
performance inside a core

Let’s look at the first three
dimensions

Data parallelism via
Loop/straight-line vectorization

The resources:
Superscalar: Fill the ports
Pipelined: Fill the stages
SIMD: Fill the computational width

SIMD width

Superscalar

Pipelining

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

16

Superscalar architecture

In this simplified design,
instructions are decoded
serially, but dispatched
to two ALUs.

The decoder and
dispatcher ought to be
able to handle two
instructions per cycle
The ALUs can have
identical or different
execution capabilities

Decode

Dispatch

ALU 0 ALU 1

Results

Instruction stream

Port 0 Port 1

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

17

Core 2 execution ports

Intel’s Core
microarchitecture
can execute four
instructions in
parallel:

17

Issue ports in the Core micro-architecture
(from Intel Manual No. 248966-016)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT

x87 FP
Add

SSE FP
Add

Integer
Shift

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

18

Next topic: Instruction pipelining

Instructions are broken up into stages.
With a one-cycle execution latency (simplified):

With a three-cycle execution latency:

I-fetch I-decode Execute Write-back
I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

19

Real-life latencies

Most integer/logic instructions have a one-cycle
execution latency:

ADD, AND, SHL (shift left), ROR (rotate right)
Some exceptions:

IMUL (integer multiply: 3)
IDIV (integer divide: 13 – 23)

Floating-point latencies are typically multi-cycle
FADD (3), FMUL (5)

Same for both x87 and SIMD variants

Exception: FABS (absolute value: 1)

Latencies in the Core micro-architecture
(from Intel Manual No. 248966-016)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

20

Latencies and serial code (1)
In serial programs, we
typically pay the penalty of a
multi-cycle latency during
execution:

In this example:
Statement 2 cannot be
started before statement 1
has finished
Statement 3 cannot be
started before statement 2
has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

d = a + e; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

21

Latencies and serial code (2)

Observations:
Even if the processor can fetch and decode a new
instruction every cycle, it must wait for the previous
result to be made available

Fortunately, the result takes a ‘bypass’, so that the write-back
stage does not cause even further delays

The result here:
9 execution cycles are needed for three instructions!

– CPI is equal to 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

22

Example of real-life serial code
Suffers long latencies:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0 // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3 # Prob 43% // jump if FALSE

High level C++ code

Machine instructions

Same
instructions
laid out
according to
latencies on
the Core 2
processor

NB: Out-of-
order
scheduling
not taken
into account.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

23

Other causes of execution delays (1)

We already stated that the aim is to
keep instructions and data flowing,
so that results are generated
optimally

First issue:
Instructions stop flowing

Typically caused by branching
There may be a branch instruction in
every 10 machine instructions!

– Or even less
If the branch is mispredicted, we suffer
a stall (cycles clock up, but no work
gets done)

DataInstructions

Results

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

24

Other causes of execution delays (2)

Second issue:
Instructions and/or data stop flowing

Instructions are not found in the I-
cache
Data is not found in the D-cache

Before execution can continue,
instructions and data must be
fetched from a lower level

DataInstructions

Results

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

25

Memory Hierarchy

From CPU to
main
memory on a
Core 2 uni-
processor

With
multicore,
memory
bandwidth is
shared
between
cores on the
same bus

CPU
(Registers)

L1D
(32 KB)

L2
(4096 KB)

memory
(large)

32 B/c, 14 c latency

~4 B/c, ~ 100 c latency

L1I
(32 KB)

32 B/c, 3 c latency

c = cycle

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

26

XMM registers for SSE

16 registers with 128 bits each in 64-bit mode (x86-64)

E3 E2 E1 E0

E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0Bit 127

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E016 Bytes

8 Words

4 DWords/Single

2 QWords/Double

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

27

Four FP data flavours

Single precision
Scalar single (SS)
Packed single (PS)

Double precision
Scalar Double (SD)
Packed Double (PD)

Note that the scalar variants replace x87 in x86-64
Possibly impacting precision!

E3 E2 E1 E0

- - - E0

E1 E0

- E0

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

28

Summary of important
items to measure

Review of what we have
discussed:

The total cycle count (C)
The total instruction count (I)
Derived value: CPI

Bubble count: Cycles when no
(new instruction) execution
occurred

Total number of executed
branch instructions
Total number of mispredicted
branches

Plus:
Total number of (last-level)
cache misses
Total number of cache
accesses
Bus occupancy

The total number of SSE
instructions
The total number (and the
type) of computational SSE
instructions

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

29

Scalable programming
for a single core

Easiest way to fill the
execution capabilities is to
use vectorization

Either, vector syntax, à la
Fortran-90

Or, loop syntax which the
compiler can vectorize
automatically

Or, explicit intrinsics
Not discussed further (today).

REAL U(100), V(100)

U = 0.0

U = SIN(V)

U(1:50) = V(2:100:2)

float u[100], v[100];

for (int i = 0; i<50; i++) u[i] = 0.0;

for (i = 0; i<50; i++) u[i] = sin(v[i]);

for (int i = 0; i<50; i++) u[i] = v[i*2+1];

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

30

Part 2: Parallel execution across
hw-threads and cores

Next dimension is a “pseudo”
dimension:

Hardware multithreading

Last three dimensions:
Multiple cores
Multiple sockets
Multiple compute nodes

Multiple nodes will not be
discussed here

Our focus is scalability inside a
node

Compute nodes

Processor cores

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

31

HEP programming paradigm

Event-level parallelism has been used for decades
Compute one event after the other in a single process

Advantage:
Large jobs can be split into N efficient processes, each
responsible for processing M events

Built-in scalability

Disadvantage:
Memory must be made available to each process

With 2 – 4 GB per process
A dual-socket server with Quad-core processors

– Needs 16 – 32 GB (or more)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

32

What are the options?

There is currently a discussion in the community about
the best way forwards (in a many-core world):

1) Stay with event-level parallelism (and independent
processes)

Assume that the necessary memory remains affordable

2) Move to a fully multi-threaded paradigm
Using gross-grained (event-level?) parallelism

3) Rely on forking:
Start the first process
Fork N others
Rely on the OS to do “copy on write”, in case pages are written to

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

33

Programming strategies/priorities

As I see them:
Get memory usage (per process) under control

To allow higher multiprogramming level per server

Draw maximum benefit from hardware threading
Introduce coarse-grained software multithreading

To allow further scaling with large core counts

Revisit data parallel constructs at the very base
Gain performance inside each core

In all cases, use appropriate tools (pfmon/Thread Profiler,
etc.)

To monitor detailed program behaviour

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

34

Concluding remarks

The aim of these lectures was to help understand
Modern computer architecture
Factors that improve or degrade performance
Keeping in mind that there is not always a straight path to
reach (all of) the available performance by our
programming community.

In most HEP programming domains event-level
processing will (continue to) dominate

Provided we get the memory requirements under control

Learn to be the master of the 7 hardware dimensions!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

35

Further reading:

“Computer Architecture: A Quantitative Approach”, J. Hennessy and D.
Patterson, 3rd ed., Morgan Kaufmann, 2002

“Inside the Machine”, J. Stokes, Ars Technica Library, 2007

“Foundations of Multithreaded, Parallel and Distributed Programming”, G.
R. Andrews, Addison-Wesley, 1999

“Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd

ed., Addison Wesley, 2006

“Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

“Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism”, J. Reinders, O’Reilly, 1st ed., 2007

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

36

BACKUP

	Slide Number 1
	Contents
	Why worry about performance?
	Moore’s law
	Evolution of CERN’s computing capacity
	Frequency scaling
	The Power Wall
	Let’s look at some processor details!
	Von Neumann architecture
	Simple processor layout
	Simple server diagram
	Initial premise
	A complicated story!
	Seven dimensions of performance
	Part 1: Opportunities for scaling performance inside a core
	Superscalar architecture
	Core 2 execution ports
	Next topic: Instruction pipelining
	Real-life latencies
	Latencies and serial code (1)
	Latencies and serial code (2)
	Example of real-life serial code
	Other causes of execution delays (1)
	Other causes of execution delays (2)
	Memory Hierarchy
	XMM registers for SSE
	Four FP data flavours
	Summary of important items to measure
	Scalable programming for a single core
	Part 2: Parallel execution across hw-threads and cores
	HEP programming paradigm
	What are the options?
	Programming strategies/priorities
	Concluding remarks
	Further reading:
	BACKUP

