Computer Architecture and Performance Tuning

Understanding performance tuning

Andrzej Nowak

CERN openlab

CERN openlab Summer Student Lectures 2008

- **1.** Software performance tuning in general
- 2. Drilling down on performance figures
- **3.** General tips

In this talk, we focus on x86_64
 processors (Intel Core and
 friends, AMD Athlon/Barcelona,
 etc)

Understanding Performance Tuning

Performance tuning in general

Andrzej Nowak – CERN

Improving application performance

- Question #1 "Why is it SOOOOOO SLOW?"
- Exchanging hardware
 - Removing common bottlenecks
 - New CPU, new hard drive, more memory
 - New, new, new...
- Replacing whole software components
 - Replacing shared or external libraries
- Improving existing code
- Performance monitoring will give you the answer
 - It allows you to find the things you could change in your setup to improve performance

Performance tuning

Why tune performance?

- To get more speed and/or throughput...
- ...or to just keep up with the hardware or previous performance figures
- Processor clock frequencies don't go up anymore! No free meals since the millennium
- Who needs performance tuning?
- Who can do performance tuning?
 - Some bottlenecks are really easy to find...
 - ... but performance tuning can be VERY tricky
- Performance tuning is a lot like tuning a car... but you can do well with only one wrench and you don't need all those expensive parts

Performance tuning levels

Source code

- Function calls
 - Excessive calls of a function or a group of functions
 - Blocking (i.e. I/O)
- Loops within your program
 - Iterating over sparse/long structures
- General characteristics of your program
 - Excessive memory allocations and copying, excessive calculations, checks, malformed conditions, etc.

Operating system

- Running daemons, limits, co-existing processes, I/O
- Hardware counter level
 - Can span all of the above... if well implemented
- Hardware
 - Buy new, better hardware... not always possible, even if the money is there

Andrzej Nowak – CERN

Popular performance tuning software (1)

Intel products:

- VTune, PTU very powerful
- Thread Checker, Thread Profiler for multithreading
- Expensive, VTune in Linux requires a precompiled kernel module

HP Caliper

🗄 Process Tree 📋 Memory Usage	🔲 Histogram 🏑	Call Graph			
	IP Samples	Seconds	Call Count	^	Overview: Percent of Grand Totals
	% Grand Totals	% Grand Totals	% Grand Totals		0 16% 32%
Functions				=	
Evaluate	3532	1	3571		
EvaluatePawns	1194	0	1591		
FirstOne	894	0	37989		
MakeMove	763	0	3379		
Quiesce	608	0	3240		
Swap	572	0	2756		
UnMakeMove	570	0	3328		
GenerateCaptures	555	0	1315		
Search	515	0	445		
Attacked	409	0	3976		
NextMove	397	0	2034		
PopCnt	311	0	33768		
AttacksTo	308	0	2837		
SwapXray	268	0	5594		
EvaluatePassedPawns	222	0	1310		
LastOne	192	0	8353		
GenerateNonCaptures	50	0	59		
LookUp	41	0	427	~	

🖄 🗳 🦫 🚅 🚳 以 🗞 🕄	🐮 🗈 🗣 🍒 🧏 🕅 🔐 Activity1 (Cal Graph)	
Furning Browser		Class (1004) Calls (1004) Self Time (1004) Tota
😑 🏘 Activity1 (Call Graph)	S Total	168 10,010,604 13 194
🖻 🍶 Call Graph Results - [vtu	ForkRecursive - Total ForkRecursive Thread 400	13 194
Total Time	forkRecursive Thread 400 divd3	5 2
Self Time		° * ×
- 🐯 Call Site Total Time		Show top Auto - % Recalculate Highlight Non
Call Site Number of I		
	Tread_400	privr i i i i i i i i i i i i i i i i i i
	Tread, 400	igenmak igenmak ike_nerdee
	Augusta	igenmak isgenmak ike_nendee
«) »	Tread, 400	igenmak isgenmak ike_nendee
Dutput	Augusta	igenmak isgenmak ike_nendee
Jutpuk	Augusta	igenmak isgenmak ike_nendee
Dutpot Instrumentation Results Sun Dec 14 13:32:25 2003 Process Call G	Last command: Unfold children Graph Call Lat	rever 83 signeomask
Dutput Instrumentation Results Sun Dec 14 13:32-26 2003 Process Call G Sun Dec 14 13:32-26 2003 Process Call G	revel. 400 max Color Col	igenmak isgenmak ike_nendee

Popular performance tuning software (2)

gprof

- Flat profiles, call lists
- Recompilation needed

oprofile

- Flat profiles
- Kernel driver needed

PIN, Valgrind

- Instrumentation / Synthetic software CPU
- Simulate such characteristics as cache misses and branch mispredictions, memory space usage, function call relationships

pfmon / perfmon2

- Low level access to counters
- No recompilation needed
- Kernel patch needed today, but will be a part of the standard Linux kernel

Performance monitoring in hardware

- Most modern CPUs are able to provide real-time statistics concerning executed instructions...
- ...via a Performance Monitoring Unit (PMU)
- The PMU is spying in real time on your application! (and everything else that goes through the CPU)
- Limited number of "sentries" (counters) available, but they are versatile
- Recorded occurrences are called events
- On the Intel Core microarchitecture:
 - 2 universal counters: #0, #1
 - 3 specialized counters: #16, #17, #18

Understanding Performance Tuning

Common performance figures

And how to interpret them

Andrzej Nowak – CERN

Basic information about your program

• The amount of:

- instructions executed
- processor cycles spent on the program
- transactions on the bus

The amount/percentage of:

- memory loads and stores
- floating point operations
- vector operations (SIMD)
- branch instructions
- cache misses

Advanced information about your program

The amount and type of:

- micro-ops executed
- SIMD instructions executed
- resource stalls within the CPU

Cache access characteristics

- A rich set on Intel Core CPUs
- Demand
- Requests (missed / hit / total / exclusive or shared / store or read)
- Lines modified / evicted / prefetched

Derived events

- Too much information available?
- Low level and fine grained events can be combined to produce ratios (so called "derived events")
- Extensive information:
 - Intel Manual 248966-016 "Intel 64 and IA-32 Architectures Optimization Reference Manual"
 - AMD CPU-specific manuals, i.e. #32559 "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"

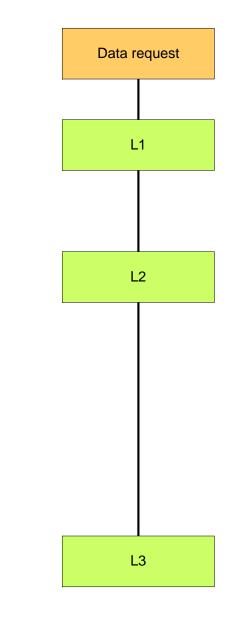
Understanding Performance Tuning

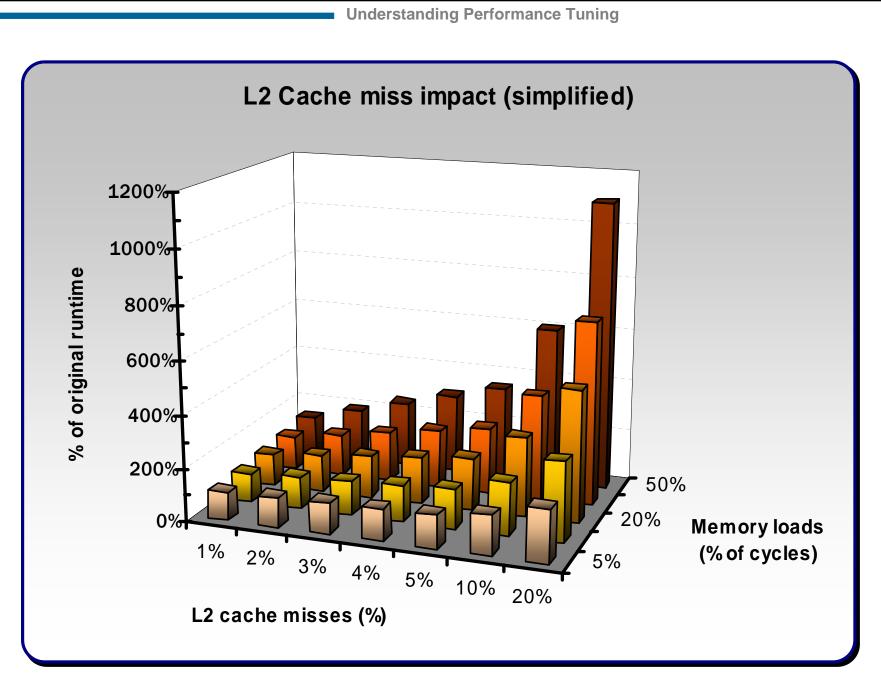
A word for the future

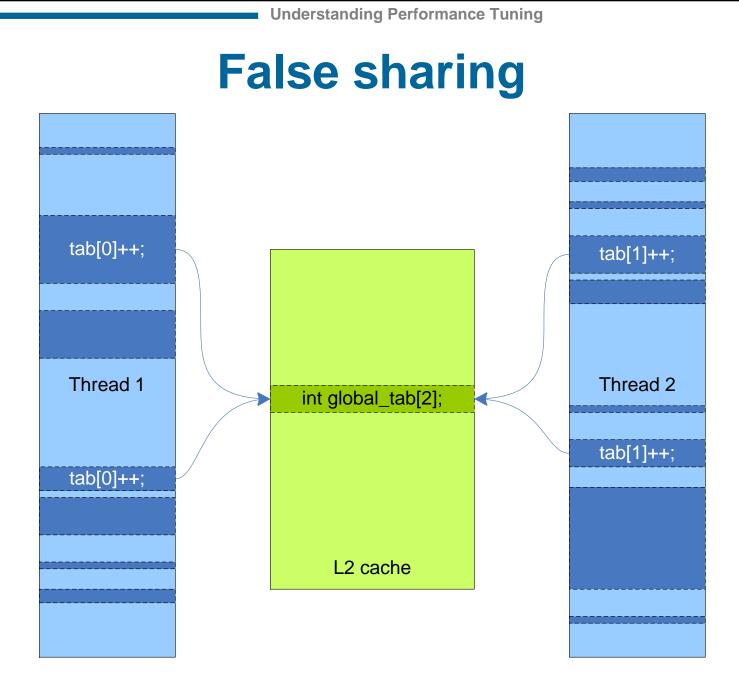
Mapping performance monitoring data onto your source code and environment requires care and experience

The CPI figure and its meaning

CPI – cycles per instruction

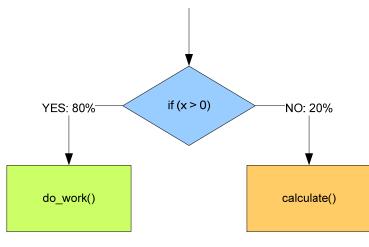

- Thanks to multiple execution ports (superscalar architecture), more than one instruction can be executed per cycle
- In Intel Core 2 CPUs, CPI can go as low as 0.25
 = 4 instructions per cycle
- CPI above 1.0 is not impressive
- The ratio of the number of CPU cycles spent on a program to the number of program instructions retired by the CPU


CYCLES / INSTRUCTIONS


 This figure illustrates the CPU usage efficiency, but, like all ratios, can be tricky to interpret

Cache misses

- If the requested item is not in the polled cache, the next level has to be consulted (cache miss)
- Significant impact on performance
- Formula:
 - LAST LEVEL CACHE MISSES / LAST LEVEL CACHE REFERENCES
- Tips:
 - A L2 cache hit ratio below 95% is considered to be catastrophic! (=5% miss)
 - Usually the figure should be above 99%
 - The overall cache miss rate might be low (misses / total instructions), but the resource stalls figure might be high; always check the cache miss percentage



Branch prediction

- Branch prediction is a process inside the CPU which determines whether a conditional branch in the program is anticipated by the hardware to be taken or not
- Typically: prediction based on history
- The effectiveness of this hardware mechanism heavily depends on the way the software is written
- The penalty for a mispredicted branch is usually severe (the pipelines inside the CPU get flushed and execution stalls for a while)

Branch prediction ratios

- The percentage of branch instructions
 BRANCH INSTRUCTIONS / ALL INSTRUCTIONS
- The percentage of mispredicted branches MISPREDICTED BRANCHES / BRANCH INSTRUCTIONS
 - The number of correctly predicted branches is typically very high (80%+), up to 99%

Floating point operations

- Often a significant portion of work of an application
- May be accelerated using SSE (SIMD)
- Related events on the Intel Core microarchitecture:
 - "traditional" x87 FP ops
 - Packed/Scalar single computational SIMD
 - Packed/Scalar double computational SIMD
 - SIMD micro-ops

Non computational SIMD instructions can also be counted

Relating to code (1)

CPI problems

- Doing too many operations?
- Large latency instructions in the code?
- Using vector instructions?

Cache misses, false sharing

- Memory access characteristics
- Data structures and their layout
- Does your program fit in the cache?
- Help the hardware prefetcher!

Relating to code (2)

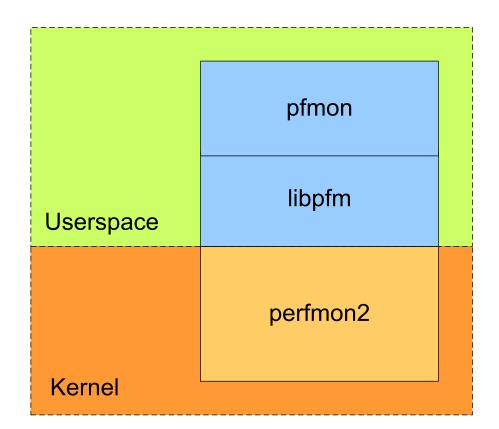
Many mispredicted branches

- Is there a way to restructure the code?
- Is there a way to make the "ifs" more predictable?
- Rearranging conditions and loops
- Too many jumps / function calls?

Excessive floating point operations

- Does everything need to be calculated?
- Could some results be reused?

Understanding Performance Tuning


Perfmon2 & pfmon

A real-world performance monitoring framework example

Andrzej Nowak – CERN

Perfmon2 architecture

- An example of a robust performance monitoring framework for Linux
- perfmon2 kernel part
- libpfm userspace interface for perfmon
- pfmon "example" userspace application, perfmon2 client

Perfmon2

Resides in the kernel

- Currently available as a kernel patch
- Being merged into the Linux kernel mainline
 - Perfmon2 will eventually be available by default in the Linux kernel (after 2.6.27)
- Very basic functionality, keeping the kernel patch slim
- Support for numerous architectures: x86, x86-64, ia64, powerpc, cell / ps3, mips, sparc
- Supported in Red Hat since a long time (which is the base for Scientific Linux)

Andrzej Nowak – CERN

Pfmon overview

- Console based interface to libpfm/perfmon2
- Provides convenient access to performance counters

Wide range of functionality:

- Counting events
- Sampling in regular intervals
- Flat profile
- System wide mode
- Triggers
- Different data readout "plug-ins" (modules) available

Events

- Many events in the CPU can be monitored
 - A comprehensive list is dependent on the CPU and can be extracted from the manufacturer's manuals
- On some CPUs (i.e. Intel Core), some events have bitmasks which limit their range, called "unit masks" or "umasks"

In pfmon:

- Getting a list of supported events: pfmon -1
- Getting information about an event: pfmon -i eventname

Basic modes

Counting

- Example: How many instructions did my application execute?
- Example: How many times did my application have to stop and wait for data from the memory?

Sampling

- Reporting results in "regular" intervals
- Example: every 100'000 cycles record the number of SSE operations since the last sample

Profiling

- Example: how many cycles are spent in which function?
- Example: how many cache misses occur in which function?
- Example: which code address is the one most frequently visited? (looking for hotspots)

Understanding Performance Tuning

This research project has been supported by a Marie Curie Early Stage Research Training Fellowship of the European Community's Sixth Framework Programme under contract number (MEST-CT-2004-504054)

Andrzej Nowak – CERN

30