
Computer Architecture and Performance Tuning

Understanding performance 
tuning

Andrzej Nowak

CERN openlab

CERN openlab Summer Student Lectures 2008



Andrzej Nowak – CERN

Understanding Performance Tuning

2

Contents

1. Software performance tuning in general

2. Drilling down on performance figures

3. General tips

In this talk, we focus on x86_64

processors (Intel Core and

friends, AMD Athlon/Barcelona,

etc)



Understanding Performance Tuning

3 Andrzej Nowak – CERN

Performance tuning in general



Andrzej Nowak – CERN

Understanding Performance Tuning

4

Improving application performance

Question #1 – “Why is it SOOOOOO SLOW?”

Exchanging hardware
Removing common bottlenecks
New CPU, new hard drive, more memory
New, new, new…

Replacing whole software components
Replacing shared or external libraries

Improving existing code

Performance monitoring will give you the answer
It allows you to find the things you could change in your setup to 
improve performance



Andrzej Nowak – CERN

Understanding Performance Tuning

5

Performance tuning

Why tune performance?
To get more speed and/or throughput…
…or to just keep up with the hardware or previous 
performance figures
Processor clock frequencies don’t go up anymore! No 
free meals since the millennium

Who needs performance tuning?

Who can do performance tuning?
Some bottlenecks are really easy to find…
… but performance tuning can be VERY tricky

Performance tuning is a lot like tuning a car… but you 
can do well with only one wrench and you don’t need all 
those expensive parts



Andrzej Nowak – CERN

Understanding Performance Tuning

6

Performance tuning levels
Source code

Function calls
Excessive calls of a function or a group of functions
Blocking (i.e. I/O)

Loops within your program
Iterating over sparse/long structures

General characteristics of your program
Excessive memory allocations and copying, excessive calculations, 
checks, malformed conditions, etc.

Operating system
Running daemons, limits, co-existing processes, I/O

Hardware counter level
Can span all of the above… if well implemented

Hardware
Buy new, better hardware… not always possible, even if the money is 
there



Andrzej Nowak – CERN

Understanding Performance Tuning

7

Popular performance tuning software (1)

Intel products:
VTune, PTU – very powerful
Thread Checker, Thread Profiler – for multithreading
Expensive, VTune in Linux requires a precompiled kernel module

HP Caliper



Andrzej Nowak – CERN

Understanding Performance Tuning

8

Popular performance tuning software (2)

gprof
Flat profiles, call lists
Recompilation needed

oprofile
Flat profiles
Kernel driver needed

PIN, Valgrind
Instrumentation / Synthetic software CPU
Simulate such characteristics as cache misses and branch 
mispredictions, memory space usage, function call relationships

pfmon / perfmon2
Low level access to counters
No recompilation needed
Kernel patch needed today, but will be a part of the standard Linux 
kernel



Andrzej Nowak – CERN

Understanding Performance Tuning

9

Performance monitoring in hardware

Most modern CPUs are able to provide real-time statistics 
concerning executed instructions…

…via a Performance Monitoring Unit (PMU)

The PMU is spying in real time on your application! (and everything 
else that goes through the CPU)

Limited number of “sentries” (counters) available, but they are 
versatile

Recorded occurrences are called events

On the Intel Core microarchitecture:
2 universal counters: #0, #1
3 specialized counters: #16, #17, #18



Understanding Performance Tuning

10 Andrzej Nowak – CERN

Common performance figures
And how to interpret them



Andrzej Nowak – CERN

Understanding Performance Tuning

11

Basic information about your program 

The amount of:
instructions executed
processor cycles spent on the program
transactions on the bus

The amount/percentage of:
memory loads and stores
floating point operations
vector operations (SIMD)
branch instructions
cache misses



Andrzej Nowak – CERN

Understanding Performance Tuning

12

Advanced information about your program

The amount and type of:
micro-ops executed
SIMD instructions executed
resource stalls within the CPU

Cache access characteristics
A rich set on Intel Core CPUs
Demand
Requests (missed / hit / total / exclusive or shared / store 
or read)
Lines modified / evicted / prefetched



Andrzej Nowak – CERN

Understanding Performance Tuning

13

Derived events

Too much information available?

Low level and fine grained events can be combined to 
produce ratios (so called “derived events”)

Extensive information:
Intel Manual 248966-016 “Intel 64 and IA-32 
Architectures Optimization Reference Manual”
AMD CPU-specific manuals, i.e. #32559 “BIOS and 
Kernel Developer’s Guide for AMD NPT Family 0Fh 
Processors”



Andrzej Nowak – CERN

Understanding Performance Tuning

14

A word for the future

Mapping performance monitoring data onto your source 
code and environment requires care and experience



Andrzej Nowak – CERN

Understanding Performance Tuning

15

The CPI figure and its meaning
CPI – cycles per instruction

Thanks to multiple execution ports (superscalar 
architecture), more than one instruction can be 
executed per cycle
In Intel Core 2 CPUs, CPI can go as low as 0.25 
= 4 instructions per cycle
CPI above 1.0 is not impressive

The ratio of the number of CPU cycles spent on a 
program to the number of program instructions 
retired by the CPU

CYCLES / INSTRUCTIONS

This figure illustrates the CPU usage efficiency, 
but, like all ratios, can be tricky to interpret



Andrzej Nowak – CERN

Understanding Performance Tuning

16

Cache misses
If the requested item is not in the polled 
cache, the next level has to be consulted 
(cache miss)

Significant impact on performance

Formula:
LAST LEVEL CACHE MISSES / LAST 

LEVEL CACHE REFERENCES

Tips:
A L2 cache hit ratio below 95% is 
considered to be catastrophic! (=5% miss)
Usually the figure should be above 99%
The overall cache miss rate might be low 
(misses / total instructions), but the 
resource stalls figure might be high; 
always check the cache miss percentage

Data request

L1

L2

L3



Andrzej Nowak – CERN

Understanding Performance Tuning

17

1% 2% 3% 4% 5% 10% 20%

5%

20%

50%

0%

200%

400%

600%

800%

1000%

1200%

%
 o

f o
rig

in
al

 ru
nt

im
e

L2 cache misses (%)

Memory loads 
(% of cycles)

L2 Cache miss impact (simplified)



Andrzej Nowak – CERN

Understanding Performance Tuning

18

False sharing

Thread 1

tab[0]++;

tab[0]++;

Thread 2

tab[1]++;

tab[1]++;

L2 cache

int global_tab[2];



Andrzej Nowak – CERN

Understanding Performance Tuning

19

Branch prediction

Branch prediction is a process inside the CPU which 
determines whether a conditional branch in the program 
is anticipated by the hardware to be taken or not

Typically: prediction based on history

The effectiveness of this hardware mechanism heavily 
depends on the way the software is written

The penalty for a mispredicted branch is usually severe 
(the pipelines inside the CPU get flushed and execution 
stalls for a while)



Andrzej Nowak – CERN

Understanding Performance Tuning

20

Branch prediction ratios
The percentage of branch instructions

BRANCH INSTRUCTIONS / ALL INSTRUCTIONS

The percentage of mispredicted branches
MISPREDICTED BRANCHES / BRANCH INSTRUCTIONS
The number of correctly predicted branches is typically 
very high (80%+), up to 99%



Andrzej Nowak – CERN

Understanding Performance Tuning

21

Floating point operations

Often a significant portion of work of an application

May be accelerated using SSE (SIMD)

Related events on the Intel Core microarchitecture:
“traditional” x87 FP ops
Packed/Scalar single computational SIMD
Packed/Scalar double computational SIMD
SIMD micro-ops

Non computational SIMD instructions can also be 
counted



Andrzej Nowak – CERN

Understanding Performance Tuning

22

Relating to code (1)

CPI problems
Doing too many operations?
Large latency instructions in the code?
Using vector instructions?

Cache misses, false sharing
Memory access characteristics
Data structures and their layout
Does your program fit in the cache?
Help the hardware prefetcher!



Andrzej Nowak – CERN

Understanding Performance Tuning

23

Relating to code (2)

Many mispredicted branches
Is there a way to restructure the code?
Is there a way to make the “ifs” more predictable?
Rearranging conditions and loops
Too many jumps / function calls?

Excessive floating point operations
Does everything need to be calculated?
Could some results be reused?



Understanding Performance Tuning

24 Andrzej Nowak – CERN

Perfmon2 & pfmon
A real-world performance monitoring framework example



Andrzej Nowak – CERN

Understanding Performance Tuning

25

Perfmon2 architecture

An example of a robust 
performance monitoring 
framework for Linux

perfmon2 – kernel part

libpfm – userspace
interface for perfmon

pfmon – “example”
userspace application, 
perfmon2 client



Andrzej Nowak – CERN

Understanding Performance Tuning

26

Perfmon2

Resides in the kernel
Currently available as a kernel patch

Being merged into the Linux kernel mainline
Perfmon2 will eventually be available by default in the 
Linux kernel (after 2.6.27)

Very basic functionality, keeping the kernel patch slim

Support for numerous architectures:
x86, x86-64, ia64, powerpc, cell / ps3, mips, sparc

Supported in Red Hat since a long time (which is the 
base for Scientific Linux)



Andrzej Nowak – CERN

Understanding Performance Tuning

27

Pfmon overview

Console based interface to libpfm/perfmon2

Provides convenient access to performance counters

Wide range of functionality:
Counting events
Sampling in regular intervals
Flat profile
System wide mode
Triggers
Different data readout “plug-ins” (modules) available



Andrzej Nowak – CERN

Understanding Performance Tuning

28

Events

Many events in the CPU can be monitored
A comprehensive list is dependent on the CPU and can 
be extracted from the manufacturer’s manuals

On some CPUs (i.e. Intel Core), some events have bit-
masks which limit their range, called “unit masks” or 
“umasks”

In pfmon:
Getting a list of supported events: pfmon –l
Getting information about an event: pfmon –i eventname



Andrzej Nowak – CERN

Understanding Performance Tuning

29

Basic modes

Counting
Example: How many instructions did my application execute?
Example: How many times did my application have to stop and wait
for data from the memory?

Sampling
Reporting results in “regular” intervals
Example: every 100’000 cycles record the number of SSE operations 
since the last sample

Profiling
Example: how many cycles are spent in which function?
Example: how many cache misses occur in which function?
Example: which code address is the one most frequently visited? 
(looking for hotspots)



Andrzej Nowak – CERN

Understanding Performance Tuning

30

Q & A

This research project has been supported by a Marie Curie Early Stage Research Training Fellowship of the European Community’s Sixth 
Framework Programme under contract number (MEST-CT-2004-504054)


	Computer Architecture and Performance Tuning
	Contents
	Performance tuning in general
	Improving application performance
	Performance tuning
	Performance tuning levels
	Popular performance tuning software (1)
	Popular performance tuning software (2)
	Performance monitoring in hardware
	Common performance figures
	Basic information about your program 
	Advanced information about your program
	Derived events
	A word for the future
	The CPI figure and its meaning
	Cache misses
	Slide Number 17
	False sharing
	Branch prediction
	Branch prediction ratios
	Floating point operations
	Relating to code (1)
	Relating to code (2)
	Perfmon2 & pfmon
	Perfmon2 architecture
	Perfmon2
	Pfmon overview
	Events
	Basic modes
	Slide Number 30

