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Agenda

� Introduction to OSI model

� More details about TCP

� Network performance

� Glance at CERN network

� Campus network

� LHC networking

� Network anomalies

� CINBAD project
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The OSI Model

� Open Systems Interconnection (OSI)

� Framework and protocols developed to allow 

different networks to communicate

� Each layer provides well-defined interface to 

the layer above

� And each layer uses only the services of the 

layer below

� Each layer adds a header

� some also a trailer
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OSI Layers (1)

� Physical Layer
� Concerned with transmission of bits and bytes

� Standards for electrical, mechanical and 
signaling interfaces

• What do bits and bytes look like “on the wire”

� Link Layer
� Groups bits and bytes into frames and ensures 

correct delivery

� Handles errors in physical layer

� Adds bits (head/tail) + checksum (receiver 
verifies checksum)

� Sublayers: LLC – Logical Link Control and MAC 
– Medium Access Control
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OSI Layers (2)

� Network Layer (“Packet” layer)

� Transmission and addressing of packets

� Chooses the best path for the packet (routing)

• Each packet gets routed independently to its destination

� Connectionless

� Unreliable, best effort service

� Internet Protocol – IP

� Transport Layer

� transparent transfer of data between end users

� UDP, TCP
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OSI Layers (3)

� Session Layer

� Establishes, maintains and terminates sessions 

between end-user application processes across 
networks 

� Presentation Layer

� Translates application → network format

� Can potentially include De-/Encryption, 
Compression...

� Application Layer

� DNS, FTP, SMTP, NFS, …
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TCP protocol

� designed in 70’s 

� influenced by end-to-end argument

� ensures reliable service (network layer does 

not deal with lost messages)

� breaks message into segments (blocks), 

assigns a sequence number and sends them

� builds reliable network connection on top of 

IP (or other protocols)

� detection of corrupted data, loss, duplicated and 

out of sequence packets

� correction of errors 
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TCP details

� the receiver sends a TCP ACK packet 
to a sender in order to acknowledge 
receipt of a packet
� Round Trip Time (RTT)

• the minimum time for a TCP ACK to be received by the 
sender

• e.g. Geneva-Taiwan RTT=~330ms

� TCP window
� Amount of outstanding data a sender can send before it 

gets an ACK back from the receiver
� Sender must keep all sent segments until acknowledged
� optimal size = Bandwidth * RTT

• e.g: 40MB for a 1Gb/s connection to Taiwan

� recommended size = 2*optimal size
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TCP flow control 

� Technique that matches the transmission 
rate of sender to that of receiver and the 
network
� to avoid flooding the network

� to adjust tcp window

� Based on two mechanisms:
� slow start

• exponential increase in tcp window size

� congestion avoidance
• increase/decrease of tcp window based on different 

criterions (e.g. pkt loss, rtt, queuing delay)
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TCP flow control

� Slow start 

� Initially tcp window is set to the MSS

� on every TCP ACK a tcp window is increased by 

one MSS

• data rate of sender doubles every RTT

� the tcp window increases until:

• the advertised tcp window size is reached

• packet loss is detected on the network (back to 
congestion avoidance)

• there is no traffic 
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TCP flow control – TCP Reno

� Congestion avoidance (TCP Reno)

� when packet loss is detected the tcp window is 

set to one half of the current window size

� if the TCP ACK is received, the tcp window is 

increased by one MSS per RTT (linear increase)

� It timeout is detected, the tcp window is reset to 
one MSS and slow start algorithm applies to 

further increases
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TCP Reno - responsiveness

� Responsiveness  ρ measures how quickly 

the connection goes back to full bandwidth 

after a packet loss 



13

TCP Reno - performance
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TCP flow control variants

� try to optimize a given connection by using 

additional information about this particular 

connection

� analyzing loss probability, RTT, queuing delay

� change the multiplicative parameters in the 

congestion avoidance protocol

� examples:

� CUBIC-TCP, BIC-TCP, Hamilton TCP, TCP 

Vegas, TCP Westwood

� support for pluggable congestion control 

algorithms in Linux  (>2.6.13)
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TCP and Performance of Network Devices (1)

� Large traffic bursts can fill up buffers in the 

network device

� Standard TCP (Reno) sends all data in the TCP 

buffer within a round trip time as fast as possible

• FAST TCP distributes the traffic over RTT

� Large tcp windows and many streams put a lot of 

pressure on the buffering

� The larger these bursts, the higher are the risks 
that this buffer overflows and causes multiple 

segments to be dropped
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TCP and Performance of Network Devices (2)

� Modern high-end routers are general-

purpose computers atop a pool of packet-

forwarding ASICs or specialized processors

� For performance, any per-packet operation must 

happen in the ASICs

� This is the so-called “fast path”

� Special cases must be “process switched”

� TCAM vs DRAM

� Fast, specialized memory vs large, general-

purpose memory
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TCP and hosts’ CPU performance

� TCP/IP stack is usually implemented in OS

� kernel context switches

� multiple memory copies: to device driver buffer, 

OS buffer, user process memory

• adds latency and consumes CPU

� Network bandwidth outstripped Moore’s Law 

in recent years 

� e.g. 1995-2003: the Ethernet speed – 100x 

increase, 40x increase in transistor density
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Closing the gap in the CPU performance

� TCP Offload Engine (TOE)

� move TCP processing to NIC

� does not reduce memory copies

� increases NIC hardware complexity

• limited resources: e.g. memory

� requires more complex maintenance

• e.g. applying patches against firmware

� works fine with the Remote Direct Memory 

Access (RDMA)
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RDMA

� “zero copy” mechanism

� application/kernel buffers registered end exposed 

to remote peers via NIC driver

� CPU bypassing 

� direct write/read to remote buffers

� designed for:

� Infinibad

� iWARP – RDMA over TCP/IP (e.g. Ethernet) 



20

OpenFabrics stack (1)

� Provides a common API that allows 

applications to take advantage of the RDMA, 

low latency and high messaging rate 

capabilities

� Encompass both the InfiniBand and iWARP 

standards

� Incorporated in the Linux Kernel since 2.6.11
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OpenFabrics stack (2)

�Sockets Direct Protocol 
(SDP) and SDP Library

�compatible sockets 

interface with Berkeley 

Socket (provides AF_SDP 

in place of AF_INET 

address family)

�LD_PRELOAD capable 

library

�User verbs

�Direct access to 

hardware interface, used 

directly by user 

applications

�uDAPL

�Interface between user 

applications and user 

verbs
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CERN campus network 

and 

LHC optical network
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LHC Networking
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The Roles of Tier CentersThe Roles of Tier Centers
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11 Tier1s, over 100 Tier2s
→ LHC Computing will be more dynamic & network-

oriented

11 Tier1s, over 100 Tier2s
→ LHC Computing will be more dynamic & network-

oriented
�Prompt calibration and 

alignment
�Reconstruction
�Store complete set of RAW 

data

�Reprocessing

�Store part of 
processed 
data 

�Monte Carlo 

Production
�Physics 

Analysis
Physics 
Analysis

Tier 1Tier 1Tier 1

Tier 1Tier 1Tier 1
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Service challenges

� are meant to enable CERN and the LHC 

experiments to test the transfer of the data 

coming from the experiments at CERN to the 

LCG Tier 1 sites around the world

� from general connectivity, through achieving high 
throughput to reaching desired functionality and 

stability of the software stack

� Nominal rates per site  - 150 – 200MB/s
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Service challenge – throughput latest results

T0-T1

T0-T1,T1-T1,T1-T2

Monte Carlo
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Network Anomalies
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Anomaly Definition (1)

� Anomalies are a fact in computer networks

� Anomaly definition is very domain specific:

� Common denominator:

� “Anomaly is a deviation of the system from the 

normal (expected) behaviour (baseline)”

� “Normal behaviour (baseline) is not stationary 

and is not always easy to define”

� “Anomalies are not necessarily easy to detect”

30

Network faults Malicious attacks Viruses/worms

Misconfiguration … …
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Anomaly Definition (2)

� Just a few examples of anomalies:

� Unauthorised DHCP server (either malicious or accidental)

� NAT (not allowed at CERN)

� Port Scan

� DDoS attack

� Spreading worms/viruses

� Exploits (attacker trying to exploit vulnerabilities)

� Broadcast storms

� Topology loops

� Examples of potential anomaly indicators:

� TCP SYN packets without corresponding ACK

� IP fan-out and fan-in (what about servers – i.e. DNS?)

� Unusual packet sizes

� Very asymmetric traffic to/from end system (what about servers?)

� Unwanted protocols on a given subnet (packets ‘that should not be there’)

� Excessive value of a certain measure (i.e. TCP Resets)

� ICMP packets

31
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Anomaly Detection (1)

� Signature based detection methods:

� Perform well against known problems

� Can provide detailed information about detected 

anomaly (type, source, etc)

� Tend to have low false positive rate

� Are unable to identify new types of anomalies

� Require up-to-date database of known signatures

� Example: antivirus software, IDS software

32

Example:
Martin Overton, “Anti-Malware Tools: Intrusion Detection Systems”,
European Institute for Computer Anti-Virus Research (EICAR), 
2005

Signature found at W32.Netsky.p binary sample
Rules for Snort:
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Anomaly Detection (2)

� Statistical detection methods:
• Learn the “normal behaviour” from network measurements

• Can continuously update the “normal baseline”

• Can detect new, unknown anomalies

• Selection of suitable input variables is needed
– Many anomalies are within “normal” bounds for most of the metrics

• May be subject to attack

– Attempt to force false negatives to occur – i.e. “boil the frog”

• Detection Rate vs False Positive ratio tradeoff

– False positives are very costly

• Poor anomaly type identification

– Is it flash crowd or DDoS attack?

– Very important issue for the real life usage
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Anomaly Detection (3)

� Statistical detection methods – examples:

� Threshold detection:

• Count occurrences of the specific event over ∆T

• If the value exceeds certain threshold -> fire an alarm

• Simple and primitive method

� Profile based:

• Characterise the past behaviour of hosts (i.e. extract 
features, patterns, sequential patterns, association 
rules, classify into groups)

• Detect a change in behaviour

• Detect suspicious class of behaviour

34



35

CINBAD Project definition

� CINBAD: Cern Investigation of Network 
Behavior Anomaly Detection

� The project goal is to understand the 
behaviour of large computer networks 
(10’000+ nodes) in High Performance 
Computing or large Campus installations to 
be able to:
� Detect traffic anomalies in the system

� Be able to perform trend analysis

� Automatically take counter measures 

� Provide post-mortem analysis facilities
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CINBAD Basic Principle

data sources

collectors

storage

analysis
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CINBAD data sources

� Network data sources

� sFlow, Netflow, SNMP, RMON, probes, etc.

� Configuration data, topology 

� Servers logs

� DNS, DHCP, etc.

� Monitoring systems

� alerts

� Human reports

� network operator reports, user complains 

� others
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