

Rare Decays and Supersymmetry (SUSY)

Tomáš Blažek *Comenius Univ, Bratislava*

25 June 2015, ATLAS Cz-Sk, Olomouc

Contents

- 1) Hot Rare Decays
 - $B_s \rightarrow \mu^+ \mu^-$ with P.Maták, Nucl.Phys. 2010
 - $K^+ \rightarrow \pi^+ \nu \nu bar$ with P.Maták, Intl. J. Phys. 2014, PhD Thesis 2015

 $R_{K} = \Gamma(K^{+} \rightarrow e^{+} \nu_{e}) / \Gamma(K^{+} \rightarrow \mu^{+} \nu_{\mu})$ with Z.Kučerová, M.S. Thesis 2015

2) Supersymmetry

3) Results, Prospects – Experiment, Theory

Standard Model – revisited

Despite its popularity, the picture is missing significant points, from theoretical perspective, more than just missing the higgs boson

Standard Model – revisited E » 100 GeV

symmetry

 $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

chiral theory (the left and right transform differently)

particle states	repres	entations	hypercharge Y (Y=Q _{el} -T ₃)	
$\begin{array}{c c} Q_{1} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} & Q_{2} = \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} & Q_{3} = \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} \\ c_{R}^{*} & c_{R}^{*} & b_{R}^{*} \end{array}$	triplet antitriplet antitriplet	doublet singlet singlet	+1/6 - 2/3 +1/3	
$\begin{array}{c} L_1 = \begin{pmatrix} e_L \\ v_{eL} \end{pmatrix} \\ e_R^* \end{pmatrix} \begin{array}{c} L_2 = \begin{pmatrix} \mu_L \\ v_{\mu L} \end{pmatrix} \\ \mu_R^* \end{array} \begin{array}{c} L_3 = \begin{pmatrix} \tau_L \\ v_{\tau L} \end{pmatrix} \\ \tau_R^* \end{array}$	singlet singlet	doublet singlet	- 1/2 +1	
higgs boson	singlet	doublet	- 1/2	

interactions strong electroweak dynamics from symmetry

 f_1f_2H , HH, (HH)² yukawa & higgs int's introduce new parameters

After Electroweak Symmetry Breaking ffH generates fermion masses ffW generates CKM Matrix

 W^0 , B replaced by physical Z, y

HH and (HH)² determine physical higgs mass

Standard Model: Br ($B_s \rightarrow \mu^+ \mu^-$) = 3.1 ± 1.4 x 10⁻⁹

August 6th 2013, CERN

Br (B_s $\rightarrow \mu^{+} \mu^{-}$) = 3.1 ± 1.4 x 10⁻⁹ Standard Model: Br ($B_s \rightarrow \mu^+ \mu^-$) = 2.9 ± 1.0 x 10⁻⁹ LHCb $3fb^{-1}$: Br ($B_s \rightarrow \mu^+ \mu^-$) = 3.0 ± 1.0 x 10⁻⁹ CMS 25fb⁻¹ :

ATLAS conf 4.9fb⁻¹ 2013 Br ($B_s \rightarrow \mu^+ \mu^-$) < 15 (±12) x 10⁻⁹

Standard Model: Br (K⁺ $\rightarrow \pi^+ \nu \nu bar$) = 7.8 ± 0.85 x 10⁻¹¹

Standard Model: Br (K⁺ $\rightarrow \pi^+ \nu \nu bar$) = 7.8 ± 0.85 x 10⁻¹¹

Experiment:

BNL E-787 and E-949 altogether seven events only:

Br (K⁺
$$\rightarrow \pi^+ \nu \nu bar$$
) = 17.3 ± 11 x 10⁻¹¹

NA62 Experiment will improve this measurement

Standard Model: Br (K⁺ $\rightarrow \pi^+ \nu \nu bar$) = 7.8 ± 0.85 x 10⁻¹¹

NA62 Experiment: in-flight kaon decays running since October 2014, will finish in 2018 goal: 10% error in this "golden" decay channel

$$R_{K} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)}$$

Standard Model: $K^{+} = \frac{1}{4\pi} G_{F}^{2} F_{0}^{2} |V_{us}|^{2} m_{e}^{2} m_{K} \left(1 - \frac{m_{e}^{2}}{m_{K}^{2}}\right)^{2}$ $R_{K}^{tree} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2}$

 $R_{K}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

$$R_{K} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)}$$

Standard Model: $R_{K}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

Experiment:

NA62, 2007: $R_{K}^{SM} = (2.488 \pm 0.010) \times 10^{-5}$

10 times more than theory

Supersymmetry

- Minimal Supersymmetric extension of the Standard Model (MSSM)
- Economic SUSY breaking

MSSM SUSY partners E » 100 GeV

 $SU(3)c \times SU(2)L \times U(1)Y$ symmetry **chiral** theory representations hypercharge Y (Y=Q $-T_3$) particle states $Q_{1,2,3}$ triplet doublet +1/6 \rightarrow (~Q_i, Q_i) u_1^c , u_2^c , u_3^c antitriplet singlet - 2/3 \rightarrow (~u^c_i, u^c_i) squarks and quarks d_1^c , d_2^c , d_3^c antitriplet singlet +1/3 \rightarrow (~d^c_i, d^c_i) singlet doublet - 1/2 L_{1,2,3} \rightarrow (~L_i, L_i) sleptons and leptons e_1^{c} , e_2^{c} , e_3^{c} singlet singlet +1 \rightarrow (~e^c;, e^c;) doublet - 1/2 \rightarrow (H_u, "H_u) + (H_d, "H_d) singlet Η **TWO** higgs doublets

No SUSY partners among the SM particle states

each with its own higgsinos

MSSM: $SU(2)L \times U(1)Y \rightarrow U(1)em$

Electroweak Symmetry Breaking

Neutral components of H_u and H_d both get independent vacuum expectation values

$$= v_{u} \neq 0$$
 $= v_{d} \neq 0$

Ratio $v_u / v_d = \tan\beta$ could be as high as 50 !

Note: $v_u / v_d = tan\beta >> 1$ may explain heavy top quark

MSSM Potential Magic:

large tan β means y_d and y_e yukawa couplings are 50 times greater than what we think they are in SM

Indeed: $m_d = y_d v_d$, $m_e = y_e v_d$ with $v_d = 3 \text{ GeV}$ instead of 170 GeV requires compensation in the yukawas by a factor 50 !

Väzbové konštanty (= náboje) v závislosti na prenesenej hybnosti

Štandardný model pod 100 GeV zvyšková kalibračná symetria $SU(3)_c \times U(1)_{em}$ Štandardný model nad škálou 100 GeV: kalibračná symetria $SU(3)_c \times SU(2)_L \times U(1)_Y$

q = prenesená hybnosť

MSSM Motivation

gauge coupling unification

q = prenesená hybnosť

Optimistic Answer: just behind the corner !

Pessimistic Answer: we'll never know

Realistic Answer:

LHC will tell and, maybe, rare decays will point us in the right direction

MSSM: Br ($B_s \rightarrow \mu^+ \mu^-$) ~ $(tan\beta)^6$

MSSM: $B_s \rightarrow \mu^+ \mu^-$ sample analysis

Blazek, Matak, 2010

T. Blažek, P. Maták

Fig. 1. MSSM chargino diagrams for the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$.

T. Blažek, P. Maták

$$R_{K} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)}$$

MSSM constribution:

does not depend on lepton flavour

 (\mathbf{R})

MSSM constribution to R_K cancels out at tree level

$$R_{K} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)}$$

1-loop MSSM correction

$$\Gamma(K^+ \to I^+ \nu) = \Gamma^{SM}(K^+ \to I^+ \nu) \left| \left[1 - \tan^2 \beta \left(\frac{m_K}{m_H} \right)^2 + \Delta_I \right] \right|^2$$

$$R_{K} = R_{K}^{SM} \frac{\left|1 - \tan^{2}\beta\left(\frac{m_{K}}{m_{H}}\right)^{2} + \Delta_{e}\right|^{2}}{\left|1 - \tan^{2}\beta\left(\frac{m_{K}}{m_{H}}\right)^{2} + \Delta_{\mu}\right|^{2}} \approx R_{K}^{SM}(1 + \underbrace{2\operatorname{Re}(\Delta_{e}) + |\Delta_{e}|^{2}}_{\approx\Delta r})$$

Sneutrínová hmotnostná matica a báza interakčných stavov:

$$M_{\tilde{\nu}}^{2} = \begin{pmatrix} m 2_{L11} & 0 & \Delta L13 \\ 0 & m 2_{L22} & 0 \\ \Delta L13 & 0 & m 2_{L33} \end{pmatrix} \begin{pmatrix} \tilde{\nu}_{e} \\ \tilde{\nu}_{\mu} \\ \tilde{\nu}_{\tau} \end{pmatrix}$$

Sleptónová hmotnostná matica a báza interakčných stavov:

$$M_{\tilde{l}}^{2} = \begin{pmatrix} m_{L11}^{2} & 0 & \Delta L13 & 0 & 0 & 0 \\ 0 & m_{L22}^{2} & 0 & 0 & 0 & 0 \\ \Delta L13 & 0 & m_{L33}^{2} & 0 & 0 & -\mu v_{u} Y_{\tau} \\ 0 & 0 & 0 & m_{R11}^{2} & 0 & \Delta R13 \\ 0 & 0 & 0 & 0 & m_{R22}^{2} & 0 \\ 0 & 0 & -\mu v_{u} Y_{\tau} & \Delta R13 & 0 & m_{R33}^{2} \end{pmatrix} \begin{pmatrix} \tilde{e}_{L} \\ \tilde{\mu}_{L} \\ \tilde{\tau}_{L} \\ \tilde{e}_{R} \\ \tilde{\mu}_{R} \\ \tilde{\tau}_{R} \end{pmatrix}$$

Kučerová, M.S.Diploma Thesis 2015

1-loop MSSM correction could barely show up in the NA62 measurement

Summary

- SUSY remains the best candidate we have for Beyond Standard Model (BSM) Physics
- if MSSM is a theory of nature, its signals should be seen fast after crossing the mass thresholds ... squark, gluino jets OR neutralino / chargino decays, however, it may take years to confirm with certainty it is the MSSM
- once the experiment suggests we see SUSY, the most pressing issue will immediately become the mechanism of SUSY breaking
- unless there is no direct BSM observation, rare decays are a great opportunity at spotting BSM Physics
- Here we scratched three of them, all dependent on large yukawa couplings due to large tan $\beta \approx 50$, motivated by simple SO(10) SUSY Unified theories
- good news: we have the experiments going on and will know soon

Invitation to the Svit Summer School

6 – 13 September 2015

MODELS OF MODERN PHYSICS

Theoretical Physics Workshop and Summer School Svit, Slovakia 6 – 13 September 2015

- Anderson Localisation (P.MARKOŠ, Comenius U, Bratislava)
- Topological Superconductivity (L.KOMENDOVÁ, Uppsala Uni.)
- Dynkin Magic for Simple Groups (T.BLAŽEK, Comenius U, Bratislava)

... and more, for program details see the School's web page

spoločnosť

http://sophia.dtp.fmph.uniba.sk/~blazek/Schools/2015S/2015S.php Contact: blazek@fmph.uniba.sk