What if the LHC finds nothing else?

Adam Smetana

Institute of Experimental and Applied Physics Czech Technical University

This is what we want to understand

Theory of elementary particles

gauge symmetry -{ $SU(3)_c \times SU(2)_L \times U(1)_Y \longrightarrow SU(3)_c \times U(1)_{em}$ chiral symmetry EW symmetry breaking

- consistent renormalizable way to introduce gauge bosons g, W, Z, γ predictivity, tree unitarity of amplitudes, massless gauge boson fields!
- Anderson-Englert-Higgs (ABEGHHK) mechanism: gauge invariant way to get massive gauge boson particles!
- Higgs particle(s) tree unitarity of amplitudes
- fermion masses:

fermion fields are chiral thus massless, but as they are coupled to the EWSB, fermion particles are massive.

Standard Model of elementary particles

Tree-level unitarity is guaranteed bz single elementary Higgs boson

Success of the Standard Model

The renormalizable Standard Model works very well...

- no mismatch between collider experimental data and the SM predictions

• CZ/SK ATLAS workshop, Olomouc

Why to go beyond the Standard Model phenomenology

But the SM does not work for every observed phenomena.

- neutrinos oscilate → **neutrinos are not massless**
- we see more than SM in extra-terrestrial observations
 - Baryon asymmetry of the Universe,
 - Dark matter,
 - Dark energy

There are other hints which support going beyond SM, e.g.:

- reactor neutrino anomaly

- sterile neutrinos?
- large scale structure formation

Why to go beyond the Standard Model theory

Flavor is just parametrized in the SM

There is one-to-one correspondence between Yukawa parameters and femion mass matrices.

EWSB is just parametrized in the SM

- Hierarchy problem – v.e.v. of Higgs is quadratically divergent

Other problems are: strong CP problem, missing quantum theory of gravity

Why to go beyond the Standard Model theory

The Higgs potential may be unstable below the Planck scale!

RGE: $16\pi^2 \frac{\mathrm{d}}{\mathrm{d}t}\lambda = 12\lambda^2 - 12y_t^4$

Superconductivity

We know similar situation.

Meisner effect: photons are massive in the bulk of superconductor.

is spontaneously broken.

Ginzburg-Landau theory describes it by complex order parameter field,

Thermodynamic free energy

$$\begin{array}{ll} & \text{ynamic} \\ & \text{hergy} \end{array} \left[F & \supset & \alpha |\phi|^2 + \frac{\beta}{2} |\phi|^4 + \frac{1}{2m_e} |(-\mathrm{i}\hbar\nabla - 2e\mathbf{A})\phi|^2 \\ & \text{which can develop nonzero value} & |\phi|^2 = -\frac{\alpha}{\beta} & \stackrel{\mathrm{if}}{>} 0 \end{array} \right]$$

Superconductivity

We know similar situation.

Meisner effect: photons are massive in the bulk of superconductor.

is spontaneously broken.

Ginzburg—Landau theory describes it by complex order parameter field,

PHENOMENOLOGICAL DESCRIPTION

which can develop nonzero value

Bardeen—Cooper—Schrieffer theory: $\phi \sim \psi^e_{f k} \psi^e_{-f k}$

$$|^2 = -\frac{\alpha}{\beta}$$

 $\stackrel{\text{if}}{>} 0$

electrons acquire a gap

$$E = \sqrt{\epsilon_{\mathbf{k}}^2 + |\Delta|^2}$$

Standard Model

Electroweak symmetry breaking: W, Z bosons are massive.

$$\mathrm{U}(1)_Y \times \mathrm{SU}(2)_L$$

is spontaneously broken.

Standard Model describes it by complex Higgs field,

$$\mathcal{L} \quad \supset \quad \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 + D^{\mu} H^{\dagger} D_{\mu} H$$

which develops nonzero v.e.v.

$$H^{\dagger}H = -\frac{\mu^2}{2\lambda} \qquad \stackrel{\rm if}{>} 0$$

Standard Model

Electroweak symmetry breaking: W, Z bosons are massive.

$$\mathrm{U}(1)_Y \times \mathrm{SU}(2)_L$$

is spontaneously broken.

Standard Model describes it by complex Higgs field,

PHENOMENOLOGICAL DESCRIPTION?

which develops nonzero v.e.v.

$$H^{\dagger}H = -\frac{\mu^2}{2\lambda}$$

Dynamical EWSB: $H \sim \bar{\Psi} \Psi$

e.g. (E)TC $E = \sqrt{\mathbf{p}^2 + m^2}$

 $\stackrel{\text{if}}{>} 0$

New dynamics

Renormalizable underlying model characterized by a scale $~\Lambda^2 \sim M^2$

Standard Model as the effective theory

$$\mathcal{L}_{ ext{eff.}}^{ ext{SM}} = \mathcal{L}^{ ext{SM}} + \mathcal{L}_{d=5}^{ ext{SM}} + \mathcal{L}_{d=6}^{ ext{SM}} + \dots$$

$$\mathcal{L}_{d=5}^{\mathrm{SM}} = \frac{c_{\nu}}{\Lambda} (\overline{L_L^c} \mathrm{i}\sigma_a H) (H \mathrm{i}\sigma_a L_L) \longleftarrow \text{only 1 Weinberg operator}$$

 $\mathcal{L}_{d=6}^{\mathrm{SM}} = \frac{c_{LL}^{(3)\ell}}{\Lambda^2} (\bar{L}_L \sigma_a \gamma_\mu L_L) (\bar{L}_L \sigma_a \gamma^\mu L_L) + \dots \longleftarrow 59(64) \text{ independent operators}$

Scale of new physics

Many mainstream beyond-Standard models install the new physics at the scale within the reach of current colliders...

...mainly for two reasons:

- ✓ to avoid the hierarchy problem
- ✓ to see spectacular signs of the new physics

CZ/SK ATLAS workshop, Olomouc

Dimension-5 Weinberg operator

$$\mathcal{L}_{d=5}^{\rm SM} = \frac{c_{\nu}}{\Lambda} (\overline{L_L^c} \mathrm{i} \sigma_a H) (\tilde{H}^T \mathrm{i} \sigma_a L)$$

Due to the exchange of heavy particle of the new dynamics.

Type-I

Type-III

Seesaw and Majorana neutrinos are predicted by effective Standard Model

Type-II

- Majorana neutrinos
- $\propto c_{\nu} \frac{v^2}{\Lambda}$ > Majorana neutrinos > Lepton number violation
 - **CP** violation

OvBB leptogenesis

Compare with charged fermions $m_f = y_f v$

Tiny neutrino masses suggest huge Λ !

CZ/SK ATLAS workshop, Olomouc

0vββ and cosmology

Combining Planck with Large Scale Structure gives strong neutrino mass constraint

Dimension-6 operators

For example: flavor-violating four-fermion interactions

These processes pushes Λ to higher values! $\Lambda > \mathcal{O}(10\,{\rm GeV})$

^{25/6/2014 • 19}

Maybe we should rather accept the existence of huge hierarchy between electroweak and new dymamics...

... and explain it rather than avoid it!

Two interesting approaches

From the teoretical point of view there is **no strict necessity** to have the new physics at the TeV scale.

• GUT theories accept the hierarchy, but they do not explain it, just parametrize it.

We like two approaches based on a dynamical (mass) scale generation as the explanation for the hierarchy

(in the analogy with QCD)

- fermion condensation models
- scale invariant models
- scale invariant quantum gravity embedding?? Agravity??
 Shaposhnikov 2013, Lindner 2013 Salvio & Strumia 2014

QCD – a prototype of a fundamental theory

assuming chiral limit

$$\mathcal{L}_{\rm QCD} = -\frac{1}{4}G^2 + \bar{\psi}(\mathrm{i}\partial \!\!\!/ + g_{\rm s}A\!\!\!/)\psi$$

- **classically scale invariant theory** no scale in Lagrangian
- dimensional transmutation

$$\alpha_{\rm s}(q^2) \equiv \frac{g_{\rm s}^2(q^2)}{4\pi} \simeq \frac{4\pi}{b \ln q^2 / \Lambda_{\rm QCD}^2}$$
$$g_{\rm s} \longrightarrow \Lambda_{\rm QCD}$$

- all masses in the QCD spectrum are proportional to athe single scale $\Lambda_{
 m QCD}$
- nice features: $\Lambda_{\rm QCD} = e^{-4\pi/b\alpha_{\rm s}(\Lambda_{\rm Planck})}\Lambda_{\rm Planck}$

no Landau pole

Fermion condensation approach

composite scalars: Nambu—Goldstone bosons, Higgs boson

$$\bar{u}_R q_L = \bar{u}_R \begin{pmatrix} u_L \\ d_L \end{pmatrix} \implies H_u \sim \begin{pmatrix} \bar{u}_R u_L \\ \bar{u}_R d_L \end{pmatrix}$$

25/6/2014 • 24

Top-quark and neutrino condensation

We assume that ...

... out of all electroweakly charged fermions, both **top-quark and neutrinos** contribute **significantly** to the electroweak scale by their Dirac masses and the corresponding condensates.

Scale invariant extension of the Standard Model

Bardeen 1995

$$\mathcal{L} = \mathcal{L}_{\rm SM}(\mu = 0) \supset -\mu^2 \mathcal{H}^{\dagger} \mathcal{H} + \lambda (H^{\dagger} H)^2$$

The fundamental theory behind SM may be the classically scale invariant theory.

- no scale in the Lagrangian
- only logarithmic divergences
- Mass scale is generated by radiative corrections via **dimensional transmutation**.
- weakly coupled theory everything is under control.

pseudo-NG boson of broken scale invariance = **scalon**

Higgs?

Scale invariant models beyond the Standard Model

Direct scale invariant SM (Higgs=scalon) **does not work**

- large top-quark mass destabilizes the effective potential
- smaller top-quark mass would lead to small Higgs mass

More bosonic d.o.f. are needed to stabilize the eff. potential

$$\mathcal{L}(H,\phi,\nu_R) = -\frac{\lambda_1}{4} (H^{\dagger}H)^2 - \frac{\lambda_2}{2} (H^{\dagger}H)(\phi^{\dagger}\phi) - \frac{\lambda_3}{4} (\phi^{\dagger}\phi)^2 + \phi \bar{\nu}_R Y \nu_R^c + \text{h.c.}$$

- hidden sector – Dark Matter candidates, dynamical origin of singlet neutrino masses M_R

What if the LHC finds nothing else?

For theory it would be **no disaster rather challenge**.

For experiment it would probably mean to go in the direction of:

- Precision measurements of Standard Model processes
 (Higgs properties, flavor violation,...)
- Cosmology
 (particle content of the Universe,...)
- Neutrino physics

(CP and lepton number violation, neutrino mass scale)