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N-particle phase space in D dimensions D1, M

Definition: P2, M2
D .

I( )p,ml,...

/ /{Hdez (p?)} ’ (?J\;pi_p> PN, My

where p is the total momentum (we will assume that p? > 0).

For kinematical reasons, it is clear that the results for the integrals I](VD) have no
physical meaning if the absolute value of the momentum p is less than the sum of

the masses. Therefore, in what follows we will imply that all results for I](VD) are
accompanied by

(9{]92 — (m1 4+ ...+ mN)2}
without writing this theta function explicitly.

[ B. Almgren, Arkiv for Physik 38 (1968) 161 |
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Recurrence relation

Recurrence relation:

I](VD)(p7m17 <o 7mN) — /dS I](:{a)l(p7 \/gamN—R—Fh <o 7mN) I](\[D_)R(\/gvmh <. 7mN—R)

Taking into account the theta functions associated with I](VD_)R and I(R?L)l, onhe can

see that the actual limits of the integration variable s in this recurrence relation

extend from (Zfi—lRmOQ to (p — ,ﬁiN_RH mi>2.
For example,
(p—ms3)”
I?ED)(p, mi, Mo, M3) = / ds IQ(D)(p, V'8, m3) IQ(D)(\@,ml,mg)
(m1+ma)?

[ B. Almgren, Arkiv for Physik 38 (1968) 161 ]
[ R. Hagedorn, Nuovo Cim. 25 (1962) 1017 ]
[ E. Byckling, K. Kajantie, Nucl. Phys. B9 (1969) 568 |
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Two-particle phase space (/N = 2)

For N =2 and D = 4, the phase-space integral can be easily evaluated as

where
MNz,y,2) =22 +y° + 2% — 20y — 2yz — 227

is nothing but the well-known Kallen function.

In D dimensions,

[ R. Delbourgo and M.L. Roberts, J. Phys. A36 (2003) 1719 ]
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Integral representation for three-particle phase space (/N = 3)

Using recurrence relation and the result for two-body phase space, one can obtain
the following non-symmetric integral representation (for D = 4):

2 Sgds
13:4p2 p \/(S—Sl)(S—SQ)(Sg—S)(S4—S) :

52

with
s1=(m1 — m2)27 s3 = (my1 + m2)2, s3=(p— m3)2, s4=(p+ ’m3)2,
so that S1 S S9 S S3 S S4.

In D dimensions,

53

L= (4p)D7_T21:2 (2-1) /SD(jj—l (5= 51)(s—52) (s3—5)(s4—)] "7

52

[ A. Bashir, R. Delbourgo, M.L. Roberts, J. Math. Phys. 42 (2001) 5553 |
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Explicit non-symmetric result for three-particle phase space

The result (for D = 4) can be expressed in terms of the elliptic integrals

f

Iy = 4pf2 o <\%Q+(m? +m; +my +p°) E(k)
+4mims [(p — m3)? — (m1 — ma)?]| [(p + m3)? — msp + mims] K (k)
+8mims [(m] + m3)(p® + m3) — 2mim3 — 2m3p*| I (oF, k)
—8mymy(p® — m3)° I (a3, k) } :
with
Qe = (ptmitmat+ms)(p+mi—mao—m3)(p—mi+ma—ms3)(p—mi—ma+ms3),
Q- = (p—mi—ma—m3)(p—mi+ma+mz)(p+mi—mo+m3)(p+mi+me—ms3) ,

2 2 2
_ Q- o (p—m3)* —(m1+mo2) o (m1—ma)* ,
k — D) Oél — 5 5 a2 — 2@1 .
Q-+ (p — m3)? — (my — ma) (m1 + ma2)
[ B. Almgren, Arkiv for Physik 38 (1968) 161 |
[ S. Bauberger, F. Berends, M. Bohm, M. Buza, Nucl. Phys. B434 (1995) 383 |
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Special case of equal masses and other comments

For equal masses, m; = mo = m3g = m we get

7.‘.2

4p?

1

I3 cq = (pmﬂp+&m{2@—ﬂﬂ@2+&ﬁﬂﬂ%04mﬁﬂﬂﬁﬁ}

with

e \/<p+m>3<p— 3m)

(p—m)3(p+3m)

Coming back to the general unequal masses, we note that the product of ), and
()_ produces the quantity

Doz = Q4+Q- = [p2 — (M1 + ma + m3)2] [pQ — (—my +mao + m3)2}
X [p2 — (mq —ma + m3)2} [pQ — (m1 + mg — m3)2]

that occurs in recurrence relations for the sunset diagram.
[ O.V. Tarasov, Nucl. Phys. B502 (1997) 455 |

[ A.l. Davydychev, V.A. Smirnov, Nucl. Phys. B554 (1999) 391 |
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Elliptic integrals

The normal elliptic integrals of the first and second kind are defined as

sin ¢

/\/(1—t2;j€1—k2t2 /\/1—k2smzp

sin ¢

_ 1242
E(p, k) = / \/11_t2t = dw\/l—l@smw

At ¢ = m/2 we get the complete elliptic integrals of the first and second kind,

1

x ) — dt T 2 2
K(k) — F<§’k>_/\/(1—t2)(1—k2t2)_2 2F1< 1

0
1

_ 1 —k2t2 7 i1
E(§,k):/dt\/ — :§2F1( 72
0

3
~—~
2y
~—

I
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Elliptic integrals (continued)
Complete elliptic integral of the third kind:

1

dt T
=—F (31, L 1] ¢ K2
!ql—d2 VI — )1 - k22) 2 1z L3 e ),

where F7 is the Appell hypergeometric function of two arguments.

The Jacobian zeta function, Z (3, k), is defined through

To represent the elliptic functions II(a?, k) in terms of Z functions, we can use

2 a; K(k) Z(Bi, k)
(a2, k) = K (k |
(05 %) ()+\/(1—a)(k2—a2)

with §; = arcsin(q; /k).
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N-particle phase space in D dimensions (continued)

I](VD)(p7m17~~7mN)_/"'/{Hdei 6(pz2_m22) (9(]9,?)} 5<Zpi_p> )

The D-dimensional vector p can be presented as (p’, p), where p is the (D — 1)-
dimensional Euclidean vector of space components.
Without loss of generality, we can work in the center-of-mass frame, p = (p°,0).

Trick with the d-function (in the center-of-mass frame, (px) = p°z"):

5 (;pi—p> = (2;)D/deE exp {12(1%33) —i(piv)} ,

[ B.A. Arbuzov, E.E. Boos, S.S. Kurennoy, K.Sh. Turashvili,

Yad. Fiz. 44 (1986) 1565 ]
In this way, we get

N

(py _ 1 D, —ip'z® D 2 2 0\ _i(p;x

1=1
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N-particle phase space in D dimensions (continued)

Integrating over (D — 1)-dimensional angles of p, we get

1(p;x (27‘-)(D—1)/2 OoprD_l)/dei ia:o 241 m?2
[ s E-m?) 660) 7 = S el o alpi) VAT
0 1

1

with p; = |p;| and £ = |x|.

At D = 4 the Bessel function reduces to an elementary function,

2
TPi§

J1/2(pi€) = sin(pi€)

Note an analogy with the calculation of Feynman integrals in the coordinate space,

when each massive propagator yields a (modified) Bessel function.
[ E. Mendels, Nuovo Cim. A45 (1978) 87 |

[ S. Groote, J.G. Korner and A.A. Pivovarov, Nucl. Phys. B542 (1999) 515 |

10
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Two-particle phase space in D dimensions

For N = 2 the integration over £ gives (we denote v = (D — 3)/2)

/ €de T, (p1€) T (ps€) = 26(0% — 52)

so that we can put p; = pa = p, whereas the integration over z° yields

5(p—\/p2+m%—w2+m%>

in the center-of-mass frame. The resulting integral

—(D-1)/2 PP
;") = / 6(p— p? +m? — p2+m%)
VP2 +m%\/p2+m% v Vv

can be easily evaluated, yielding the known result

(D-1)/2

(D) _
B = et gy

D—3
p?,m2,m2)] 7"

11
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Three-particle phase space in D dimensions

Here and below we follow
[ A. |. Davydychev, R. Delbourgo, J. Phys. A37 (2004) 4871 ]

For the three-particle phase-space integral we get

(D-7)/2.D-2F 4 = | 3 7 (D D24, |
(D) _ 2 T f 0 —1 OwO I | 1330 24m2
0 — 00

(=)

Here we can integrate over &, using
©.@)
0

(with v = (D —3)/2), where X is the Kallen function. In our case, when all p; > 0,

20{—X\(p%, p3, P3) = A(p3, p3, p3)]¥ /2
w20 (v + 3) (8p1p2p3)”

Jo(p1§) Ju(p28) Ju(ps) =

0{—\(p1, 3, p5)} = 0(p1 + p2 — p3) O(p2 + ps — p1) O(p3s + p1 — p2) ,
equals 1 when one can compose a triangle with sides p1, p2, p3, and 0 otherwise.

12
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Three-particle phase space in D dimensions (continued)

Denoting o; = \/p,?—l—m,% (so that o1 + 02 + 03 = p, due to a § function),
integrating over ' and introducing Mandelstam-type variables

s=p’+m3—2pos, t=p° +mi—2po1, u=p° +ms—2pos,
satisfying
s+t4+u=mi+ms+m3+p°=w ()

we get another integral representation (the integration limits are discussed below),

D—2
(D) _ m B b (D-4)/2 g 1
I3 pP—2T(D — 2) /// ds dt du d(s+t+u—wq) [P(s,t,u)] 0{P(s,t,u)}

where

O(s,t,u) = A {)\(s,m%,p2), A(t,m7,p?), )\(u,mg,pQ)}

 16p2

can also be written in a more familiar Kibble cubic form (provided that () holds)

O(s,tyu) = stu— s(m2mi+ pPm3) — t(mdm3 + p*m?) — u(m3m? + pPm3)
+2(mimams + p*mim; + p mams + p mamy)

13
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The Dalitz—Kibble integration area

The maximal values (P, P;, P,):

Smax — (p — m3)21
tmax — (p — m1)2,

Umax — (p — m2)2-

The minimal values (O;, Oy, O,):

Smin = (M1 + m2)?,

tmin = (m2 + m3)2;
Umin — (ml + m3>2-

Smin Os

Moreover, due to the theta function 60 {®(s,t,u)} the region of integration is in
fact restricted by the interior of the cubic curve ®(s,t,u) = 0.

The function ®(s,t,u) has a maximum within the region of integration.

For equal masses, ®1,0x = 5= p?(p? — 9m?)? occurs at s = ¢ = u = & (p? + 3m?).

For the general unequal masses, one needs to solve a fourth-order algebraic equation
to find the position of the maximum.

14
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Geometrical interpretation

| et ntrod [ A. |. Davydychev, R. Delbourgo, J. Math. Phys. 39 (1998) 4299 |
€t us Introduce

S —m?2 — m?2 t —m2—m? U — m2 — ma2
Clg = 1 2 Coz = 2 3 Cr3 = 1 3
2m1m2 ’ 277?,277?,3 ’ 2m1m3

Then, the function ®(s,t,u) can be presented as a Gram determinant,

1 ci2 cs3
®(s,t,u) =4mimsms | ci1o 1 ca3

c13 c23 1

For D = 4, we get (the integration extends over c;; > 1)

972 1 c19 ci3
I. = 2m2m2 deio degs deos 6 1
3 = m1Mmo1ng C12 dC13 AC23 C12 C23

2
D
ci3 c23 1

x4 (m] +m3 -+ mj + 2mimacia + 2mamacaes + 2myimgciz — p°)

15
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Geometrical interpretation (continued)

If we were to interpret c;; as the cosines

of the angles between the m; and m; sides
of a vertex of a parallelepiped

then all these quantities would have

a straightforward geometrical interpretation:

®(s,t,u) « 4{volume of parallelepiped}?,

the 6 function would tell us that
the “principal” diagonal should be equal to p,

the quantities /s, v/t and \/u could be
identified as the diagonals of the faces,

the quantities

p2+m%—t p2+m§—u and p2+m§—s
2pmy 2pmeg 2pms

could be understood as cosines of the angles between the diagonal p and the m;
sides of the parallelepiped.

16
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Kibble cubic characteristics

To remind, s+t+u=m?+m3+m3+ p? = wo.
Suppose
(s0,to, wo — S0 — to), (S0, wo — So — wg,Ug), (wo— to — wo,to,uo)

all are the roots of the equation ®(s,t,u) = 0. Then, we can present ®(s,t,u) as
O (s,t,u) = stu — stoug — Sotug — Sotou + 28ptoug -

Defining

_ Jtoug _[Soto ~ [soug
Cty = 9 Cst = 9 Csy = )
st SU

we arrive at another Gram determinant representation for ®(s,t, u),

1 Ctu Cst
O(s,t,u) =stu | ¢ty 1 Csy
Cst Csu 1

17
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Kibble cubic characteristics (continued)
There are (at least) two sets of solutions that can be described as

o A1 A5 o Ay Az I A A3
0 Ag ’ 0 Al ) 0 A2 )

so that
®(s,t,u) = stu — A5t — Asu — A3s + 24, A2 A5 .

The first set of solutions corresponds to

Ay =pmi+mams, As =pmg+ msmy, Az =pms+mims.

For this set, we have
_ pmgz + mimsa pma 4+ mims _ pmy + mams3

Ctu — \/@ s Cst = \/& y  Csu = \/@

Note that if we change p — —p, this would also be a solution, which would
correspond to a “non-physical” branch of the Kibble cubic.

18
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Kibble cubic characteristics (continued)

There are (at least) two sets of solutions that can be described as

AlAQ ; A2A3 A1A3
— — Un =
A3 ’ 0 Al ’ 0 AQ ’

S0

so that
®(s,t,u) = stu — A%t — Asu — Ass + 24, A2A;5 .

The second set of solutions corresponds to

A = %(p2+m%—m%—m§) , Ay = %(p2—m%+m%—m§) , A3z = %(pQ—m%—ngrm

For this set, we get

_pPomi-mitmi  pl-mitmi—mi  ptmi-mi—mj

Ctu y Cst — y Csu —
‘ 2v/tu ‘ 24/ st 24/su

19
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Kibble cubic characteristics (continued)

In the Dalitz—Kibble plot

we connect the points

for each of the two sets

by dashed lines, introducing
subscripts [1] and [2].

The two “dashed” triangles
indicate that the two sets

are complementary to each other:
the boundary of the Dalitz plot
confines tu, st and su as follows:

Calc2015

20
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Kibble cubic characteristics (continued)

Consider the values of the “cosines” cg,, cst and ci,.

For the first set, csy, cst and ¢, would vary between 1 and cosy; (i = 1,2, 3),
respectively, where

cos o) — 2(pm1 — maoms) 08 0y — 2(pmo — m3gmy) cos 03 — 2(pms — mims)
'S Ermmmgomd T pomlrmiomy T oo mg

Their sines can be presented as

Ve /@

sin 1 =

o V& o
5 59 S111 Yo = 59 S111 Y3 = 5

P =g Pt P

For the second set, csy, cs¢ and ¢y, would vary between 1 and 1/cos;. This
means that we need to understand them in the sense of analytic continuation.

21
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Bridge between integral representations
For D = 4, using the representation for ®(s,t,u) in terms of sg, to and ug, we get

2
I3 = 47T—])2/// ds dt du 5(s—|—t—|—u—w0) Q(Stu—sto’LL()—SotUo—SotoU+280toUo) ;

with wg = p? + m? + m3 + m3. Integrating over u yields

2
I3 = % // ds dt 0{(St — Soto)(’wo — S — t) — StOUO — S()tU,O -+ 280t0U0} .

Integrating over t, we get difference between the roots of the quadratic argument,

1

—\/34 — 2w s34+ (wi+2s0to+2s0uo —4toug) s2 —2(woto+woug —4ugto) sos+sa(to—uo)?.
s

For both sets of (sg, tg, ug) the square root takes the familiar form,

7T

7 ds
I3 = s \/ (s —s1)(s —s2)(s3—s)(s4— 5),

52

22
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Three-particle phase space in odd dimensions (D = 3,5, ...)
Starting from the (non-symmetric) D-dimensional representation,

53

1P = sy [ s [6—s)(s—sn)(ss=s)sams)] P70

52

we can easily see (just substituting s = x?) that all odd-dimensional phase-space
integrals can be expressed in terms of polynomial functions

2
I§3) — g—p(p — M1 — Mo — m3) ,
7.‘.4
I?()5) B 60p3 (p—mq —mg — m3)3 {%(p — myp —Mma — m3)4 + (m1 + ma + mg)p3

—2(m% + m% + mg)p2 + (mi’ + m‘;’ + mg)p + 12mymomsp

—(m1+ma+mgz)(mi1+ma)(ma+ms)(ms+mi) + dmimamsz(my +mz+m3)} :
etc., which are explicitly symmetric in the masses m;.

23
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Three-particle phase space in two dimensions
Consider the case D = 2. Then, we get just the elliptic integral K (k),

I§2)=83 ds — 2 K.
8[ Y/ Cr [ P vy BBV o

This is explicitly symmetric in the masses, because )1, J_ and k are symmetric,

Q+ (
Q_ p— (p—m1—mg—mg)(p—m1+m2+m3)(p+m1—m2+m3)(p+m1+m2—m3),

Q_
kE = —.
| @+

We can also obtain a very useful relation between the three Z(y;, k) functions,

p+mi+mao+ms)(p+mi—mao—ms)(p—mi+ma—ms)(p—mi—me+ms) ,

Z(p1,k) + Z(p2, k) + Z(p3,k) = k* sinp; sin g, sins .

24
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Three-particle phase space in four dimensions

Use a trick of inserting the unity (look at the argument of the J-function), to get
rid of 1/s, 1/t and 1/u (t; and u; are obtained from s; by permutation of masses):

71.2

4—p2/// ds dt du d(s+t+u—wq) O(stu—stoug— Sotug— Sotou—+2sptoug)

2

t

= —Z 5 /// ds dt du shitu d(s+t+u—wq) O(stu—styug— sotug— sotou+2sotoup)
p Wo

S3
7

- 4p2w0{/d8 V(s —51)(s — 52)(s3 — 5)(54 — 5)

S2

t3

+/dt Vit —t)(t —ta)(ts —t)(ts — t)

to

u3

-I—/du V(= uy)(u — ug)(us — u)(ug — u)}

uz

25
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Three-particle phase space in four dimensions

Collecting the results for all three integrals and using the relation for Z-functions,
we arrive at the symmetric result

2
b= VAR ) [0 K6
Z(o1, k) Z(ps, k) Z(ps, k
+Q+K(k)[ WLk) | Zenh) | 21, )]}
sSIn” Y1 SIn” Y9 S 3
where
. Vv @+ . Vv @+ . V Q@+
SV = 5 5 5o SY2= o o oy SUYs = s 5 o
p?+mj—my—mg3 p*—mi+my—ms p?—mj—my+ms3

This result can also be presented in terms of the elliptic integrals II, using

K (k) Z(p;, k) = cot ; \/ 1 — k2sin® ¢; [IL(k*sin® @i, k) — K (k)] .

26
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Three-particle phase space in six dimensions

Using the same approach we can also obtain symmetric results D = 6 (and higher

dimensions):
’ 7_(_4 Q1/2
R R e OB L) 192(p" -+l +mf+mS) — 112(p*+mf+mi+m3)?

—6(p*+mi+my+mg)* — 156(p"+mi+ms+mg)(p*+mi+ms+ms)
+83<p4+m%+m3+m§><p2+m%+m3+m§>2}
+10Q QYK (k )[ (b2 + m3 + m3 + m)? — 16(p* + m? + m} + m3)|

5 2
4 sin P1 sin L2 sin @3 Sin2 Y1 Sin2 L2 Sin2 03

Z(p1, k) X Z(p2, k) 4 Z(¢3’k)] } :

3
~GQ G i+ md (k) | L)y 2 ) T
SN~ Y1 SIn~ Y9 Sl ©3

27
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Summary and conclusions

We have considered several representations for the three-particle phase space (in
terms of the Kibble cubic ®(s,t,u), etc.), exploring their symmetry properties
and geometrical meaning.

A number of representations are given for N-particle phase space, for an arbitrary
dimension D.

It was shown that the angles ¢; are convenient to describe the results for the
three-particle phase-space integral Is.

The result for I5 in four dimensions (given in terms of the Jacobian Z function)
is very compact and explicitly symmetric with respect to all masses m;.

In similar way, explicitly symmetric results for higher dimensions (D = 6, etc.)
can be also obtained.

28



