Symmetrical approach to three-body phase space

A. I. Davydychev
Schlumberger, Sugar Land / INP MSU, Moscow
based on work with
R. Delbourgo

N-particle phase space in D dimensions

Definition:

$$
p_{2}, m_{2}
$$

$$
\begin{aligned}
& I_{N}^{(D)}\left(p, m_{1}, \ldots, m_{N}\right) \\
& \quad=\int \cdots \int\left\{\prod_{i=1}^{N} \mathrm{~d}^{D} p_{i} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \theta\left(p_{i}^{0}\right)\right\} \delta\left(\sum_{i=1}^{N} p_{i}-p\right)
\end{aligned}
$$

where p is the total momentum (we will assume that $p^{2}>0$).
For kinematical reasons, it is clear that the results for the integrals $I_{N}^{(D)}$ have no physical meaning if the absolute value of the momentum p is less than the sum of the masses. Therefore, in what follows we will imply that all results for $I_{N}^{(D)}$ are accompanied by

$$
\theta\left\{p^{2}-\left(m_{1}+\ldots+m_{N}\right)^{2}\right\}
$$

without writing this theta function explicitly.

Recurrence relation

Recurrence relation:
$I_{N}^{(D)}\left(p, m_{1}, \ldots, m_{N}\right)=\int \mathrm{d} s I_{R+1}^{(D)}\left(p, \sqrt{s}, m_{N-R+1}, \ldots, m_{N}\right) I_{N-R}^{(D)}\left(\sqrt{s}, m_{1}, \ldots, m_{N-R}\right)$

Taking into account the theta functions associated with $I_{N-R}^{(D)}$ and $I_{R+1}^{(D)}$, one can see that the actual limits of the integration variable s in this recurrence relation extend from $\left(\sum_{i=1}^{N-R} m_{i}\right)^{2}$ to $\left(p-\sum_{i=N-R+1}^{N} m_{i}\right)^{2}$.
For example,

$$
I_{3}^{(D)}\left(p, m_{1}, m_{2}, m_{3}\right)=\int_{\left(m_{1}+m_{2}\right)^{2}}^{\left(p-m_{3}\right)^{2}} \mathrm{~d} s I_{2}^{(D)}\left(p, \sqrt{s}, m_{3}\right) I_{2}^{(D)}\left(\sqrt{s}, m_{1}, m_{2}\right)
$$

[B. Almgren, Arkiv för Physik 38 (1968) 161]
[R. Hagedorn, Nuovo Cim. 25 (1962) 1017]
[E. Byckling, K. Kajantie, Nucl. Phys. B9 (1969) 568]

Two-particle phase space ($N=2$)

For $N=2$ and $D=4$, the phase-space integral can be easily evaluated as

$$
I_{2}=\frac{\pi}{2 p^{2}} \sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}
$$

where

$$
\lambda(x, y, z) \equiv x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x
$$

is nothing but the well-known Källen function.
In D dimensions,

$$
I_{2}^{(D)}=\frac{\pi^{(D-1) / 2}}{(2 p)^{D-2} \Gamma\left(\frac{D-1}{2}\right)}\left[\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)\right]^{(D-3) / 2}
$$

Integral representation for three-particle phase space ($N=3$)

Using recurrence relation and the result for two-body phase space, one can obtain the following non-symmetric integral representation (for $D=4$):

$$
I_{3}=\frac{\pi^{2}}{4 p^{2}} \int_{s_{2}}^{s_{3}} \frac{\mathrm{~d} s}{s} \sqrt{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s_{3}-s\right)\left(s_{4}-s\right)}
$$

with

$$
s_{1}=\left(m_{1}-m_{2}\right)^{2}, \quad s_{2}=\left(m_{1}+m_{2}\right)^{2}, \quad s_{3}=\left(p-m_{3}\right)^{2}, \quad s_{4}=\left(p+m_{3}\right)^{2}
$$

so that $s_{1} \leq s_{2} \leq s_{3} \leq s_{4}$.
In D dimensions,

$$
I_{3}^{(D)}=\frac{\pi^{D-1}}{(4 p)^{D-2} \Gamma^{2}\left(\frac{D-1}{2}\right)} \int_{s_{2}}^{s_{3}} \frac{\mathrm{~d} s}{s^{D / 2-1}}\left[\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s_{3}-s\right)\left(s_{4}-s\right)\right]^{(D-3) / 2}
$$

Explicit non-symmetric result for three-particle phase space

The result (for $D=4$) can be expressed in terms of the elliptic integrals

$$
\begin{aligned}
I_{3}= & \frac{\pi^{2}}{4 p^{2} \sqrt{Q_{+}}}\left\{\frac{1}{2} Q_{+}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+p^{2}\right) E(k)\right. \\
& +4 m_{1} m_{2}\left[\left(p-m_{3}\right)^{2}-\left(m_{1}-m_{2}\right)^{2}\right]\left[\left(p+m_{3}\right)^{2}-m_{3} p+m_{1} m_{2}\right] K(k) \\
& +8 m_{1} m_{2}\left[\left(m_{1}^{2}+m_{2}^{2}\right)\left(p^{2}+m_{3}^{2}\right)-2 m_{1}^{2} m_{2}^{2}-2 m_{3}^{2} p^{2}\right] \Pi\left(\alpha_{1}^{2}, k\right) \\
& \left.-8 m_{1} m_{2}\left(p^{2}-m_{3}^{2}\right)^{2} \Pi\left(\alpha_{2}^{2}, k\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& Q_{+} \equiv \equiv\left(p+m_{1}+m_{2}+m_{3}\right)\left(p+m_{1}-m_{2}-m_{3}\right)\left(p-m_{1}+m_{2}-m_{3}\right)\left(p-m_{1}-m_{2}+m_{3}\right), \\
& Q_{-} \equiv \equiv\left(p-m_{1}-m_{2}-m_{3}\right)\left(p-m_{1}+m_{2}+m_{3}\right)\left(p+m_{1}-m_{2}+m_{3}\right)\left(p+m_{1}+m_{2}-m_{3}\right), \\
& k \equiv \sqrt{\frac{Q_{-}}{Q_{+}}, \quad \alpha_{1}^{2}=\frac{\left(p-m_{3}\right)^{2}-\left(m_{1}+m_{2}\right)^{2}}{\left(p-m_{3}\right)^{2}-\left(m_{1}-m_{2}\right)^{2}}, \quad \alpha_{2}^{2}=\frac{\left(m_{1}-m_{2}\right)^{2}}{\left(m_{1}+m_{2}\right)^{2}} \alpha_{1}^{2} .} \\
& \text { [[B. Almgren, Arkiv för Physik 38 (1968) 161]] Bauberger, F. Berends, M. Böhm, M. Buza, Nucl. Phys. B434 (1995) 383] }
\end{aligned}
$$

Special case of equal masses and other comments

For equal masses, $m_{1}=m_{2}=m_{3} \equiv m$ we get

$$
I_{3, \mathrm{eq}}=\frac{\pi^{2}}{4 p^{2}} \sqrt{(p-m)(p+3 m)}\left\{\frac{1}{2}(p-m)\left(p^{2}+3 m^{2}\right) E\left(k_{\mathrm{eq}}\right)-4 m^{2} p K\left(k_{\mathrm{eq}}\right)\right\}
$$

with

$$
k_{\mathrm{eq}}=\sqrt{\frac{(p+m)^{3}(p-3 m)}{(p-m)^{3}(p+3 m)}} .
$$

Coming back to the general unequal masses, we note that the product of Q_{+}and Q_{-}produces the quantity

$$
\begin{aligned}
D_{123} \equiv Q_{+} Q_{-} & =\left[p^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right]\left[p^{2}-\left(-m_{1}+m_{2}+m_{3}\right)^{2}\right] \\
& \times\left[p^{2}-\left(m_{1}-m_{2}+m_{3}\right)^{2}\right]\left[p^{2}-\left(m_{1}+m_{2}-m_{3}\right)^{2}\right]
\end{aligned}
$$

that occurs in recurrence relations for the sunset diagram.

Elliptic integrals

The normal elliptic integrals of the first and second kind are defined as

$$
\begin{aligned}
& F(\varphi, k)=\int_{0}^{\sin \varphi} \frac{\mathrm{d} t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\int_{0}^{\varphi} \frac{\mathrm{d} \psi}{\sqrt{1-k^{2} \sin ^{2} \psi}} \\
& E(\varphi, k)=\int_{0}^{\sin \varphi} \mathrm{d} t \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}}=\int_{0}^{\varphi} \mathrm{d} \psi \sqrt{1-k^{2} \sin ^{2} \psi} .
\end{aligned}
$$

At $\varphi=\pi / 2$ we get the complete elliptic integrals of the first and second kind,

$$
\begin{aligned}
& K(k)=F\left(\frac{\pi}{2}, k\right)=\int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\frac{\pi}{2}{ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2} \\
1
\end{array} \right\rvert\, k^{2}\right) \\
& E(k)=E\left(\frac{\pi}{2}, k\right)=\int_{0}^{1} \mathrm{~d} t \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}}=\frac{\pi}{2}{ }_{2} F_{1}\binom{-\frac{1}{2}, \left.\frac{1}{2} \right\rvert\, k^{2}}{1}
\end{aligned}
$$

Elliptic integrals (continued)

Complete elliptic integral of the third kind:

$$
\Pi(c, k)=\int_{0}^{1} \frac{\mathrm{~d} t}{\left(1-c t^{2}\right) \sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\frac{\pi}{2} F_{1}\left(\frac{1}{2} ; 1, \frac{1}{2} ; 1 \mid c, k^{2}\right),
$$

where F_{1} is the Appell hypergeometric function of two arguments.
The Jacobian zeta function, $Z(\beta, k)$, is defined through

$$
K(k) Z(\beta, k)=K(k) E(\beta, k)-E(k) F(\beta, k) .
$$

To represent the elliptic functions $\Pi\left(\alpha_{i}^{2}, k\right)$ in terms of Z functions, we can use

$$
\Pi\left(\alpha_{i}^{2}, k\right)=K(k)+\frac{\alpha_{i} K(k) Z\left(\beta_{i}, k\right)}{\sqrt{\left(1-\alpha_{i}^{2}\right)\left(k^{2}-\alpha_{i}^{2}\right)}},
$$

with $\beta_{i}=\arcsin \left(\alpha_{i} / k\right)$.

N-particle phase space in D dimensions (continued)

$$
I_{N}^{(D)}\left(p, m_{1}, \ldots, m_{N}\right)=\int \cdots \int\left\{\prod_{i=1}^{N} \mathrm{~d}^{D} p_{i} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \theta\left(p_{i}^{0}\right)\right\} \delta\left(\sum_{i=1}^{N} p_{i}-p\right)
$$

The D-dimensional vector p can be presented as $\left(p^{0}, \mathbf{p}\right)$, where \mathbf{p} is the $(D-1)$ dimensional Euclidean vector of space components.
Without loss of generality, we can work in the center-of-mass frame, $p=\left(p^{0}, \mathbf{0}\right)$.
Trick with the δ-function (in the center-of-mass frame, $(p x)=p^{0} x^{0}$):

$$
\delta\left(\sum_{i=1}^{N} p_{i}-p\right)=\frac{1}{(2 \pi)^{D}} \int \mathrm{~d}^{D} x \exp \left\{\mathrm{i} \sum_{i=1}^{N}\left(p_{i} x\right)-\mathrm{i}(p x)\right\}
$$

[B.A. Arbuzov, E.E. Boos, S.S. Kurennoy, K.Sh. Turashvili,
Yad. Fiz. 44 (1986) 1565]
In this way, we get

$$
I_{N}^{(D)}=\frac{1}{(2 \pi)^{D}} \int \mathrm{~d}^{D} x e^{-\mathrm{i} p^{0} x^{0}}\left\{\prod_{i=1}^{N} \int \mathrm{~d}^{D} p_{i} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \theta\left(p_{i}^{0}\right) e^{\mathrm{i}\left(p_{i} x\right)}\right\}
$$

N-particle phase space in D dimensions (continued)

Integrating over $(D-1)$-dimensional angles of \mathbf{p}_{i} we get
$\int \mathrm{d}^{D} p_{i} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \theta\left(p_{i}^{0}\right) e^{\mathrm{i}\left(p_{i} x\right)}=\frac{(2 \pi)^{(D-1) / 2}}{2 \xi^{(D-3) / 2}} \int_{0}^{\infty} \frac{\rho_{i}^{(D-1) / 2} \mathrm{~d} \rho_{i}}{\sqrt{\rho_{i}^{2}+m_{i}^{2}}} J_{(D-3) / 2}\left(\rho_{i} \xi\right) e^{\mathrm{i} x^{0} \sqrt{\rho_{i}^{2}+m_{i}^{2}}}$
with $\rho_{i} \equiv\left|\mathbf{p}_{i}\right|$ and $\xi \equiv|\mathbf{x}|$.
At $D=4$ the Bessel function reduces to an elementary function,

$$
J_{1 / 2}\left(\rho_{i} \xi\right)=\sqrt{\frac{2}{\pi \rho_{i} \xi}} \sin \left(\rho_{i} \xi\right)
$$

Note an analogy with the calculation of Feynman integrals in the coordinate space, when each massive propagator yields a (modified) Bessel function.

Two-particle phase space in D dimensions

For $N=2$ the integration over ξ gives (we denote $\nu=(D-3) / 2$)

$$
\int_{0}^{\infty} \xi \mathrm{d} \xi J_{\nu}\left(\rho_{1} \xi\right) J_{\nu}\left(\rho_{2} \xi\right)=2 \delta\left(\rho_{1}^{2}-\rho_{2}^{2}\right)
$$

so that we can put $\rho_{1}=\rho_{2} \equiv \rho$, whereas the integration over x^{0} yields

$$
\delta\left(p-\sqrt{\rho^{2}+m_{1}^{2}}-\sqrt{\rho^{2}+m_{2}^{2}}\right)
$$

in the center-of-mass frame. The resulting integral

$$
I_{2}^{(D)}=\frac{\pi^{(D-1) / 2}}{2 \Gamma\left(\frac{D-1}{2}\right)} \int_{0}^{\infty} \frac{\rho^{D-2} \mathrm{~d} \rho}{\sqrt{\rho^{2}+m_{1}^{2}} \sqrt{\rho^{2}+m_{2}^{2}}} \delta\left(p-\sqrt{\rho^{2}+m_{1}^{2}}-\sqrt{\rho^{2}+m_{2}^{2}}\right)
$$

can be easily evaluated, yielding the known result

$$
I_{2}^{(D)}=\frac{\pi^{(D-1) / 2}}{(2 p)^{D-2} \Gamma\left(\frac{D-1}{2}\right)}\left[\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)\right]^{(D-3) / 2}
$$

Three-particle phase space in D dimensions

Here and below we follow
[A. I. Davydychev, R. Delbourgo, J. Phys. A37 (2004) 4871]
For the three-particle phase-space integral we get

$$
I_{3}^{(D)}=\frac{2^{(D-7) / 2} \pi^{D-2}}{\Gamma\left(\frac{D-1}{2}\right)} \int_{0}^{\infty} \frac{\mathrm{d} \xi}{\xi^{(D-5) / 2}} \int_{-\infty}^{\infty} \mathrm{d} x^{0} e^{-\mathrm{i} p^{0} x^{0}} \prod_{i=1}^{3} \int_{0}^{\infty} \frac{\rho_{i}^{(D-1) / 2} \mathrm{~d} \rho_{i}}{\sqrt{\rho_{i}^{2}+m_{i}^{2}}} J_{(D-3) / 2}\left(\rho_{i} \xi\right) e^{\mathrm{i} x^{0} \sqrt{\rho_{i}^{2}+m_{i}^{2}}}
$$

Here we can integrate over ξ, using

$$
\int_{0}^{\infty} \frac{\mathrm{d} \xi}{\xi^{\nu-1}} J_{\nu}\left(\rho_{1} \xi\right) J_{\nu}\left(\rho_{2} \xi\right) J_{\nu}\left(\rho_{3} \xi\right)=\frac{2 \theta\left\{-\lambda\left(\rho_{1}^{2}, \rho_{2}^{2}, \rho_{3}^{2}\right)\right\}\left[-\lambda\left(\rho_{1}^{2}, \rho_{2}^{2}, \rho_{3}^{2}\right)\right]^{\nu-1 / 2}}{\pi^{1 / 2} \Gamma\left(\nu+\frac{1}{2}\right)\left(8 \rho_{1} \rho_{2} \rho_{3}\right)^{\nu}}
$$

(with $\nu=(D-3) / 2$), where λ is the Källen function. In our case, when all $\rho_{i} \geq 0$,

$$
\theta\left\{-\lambda\left(\rho_{1}^{2}, \rho_{2}^{2}, \rho_{3}^{2}\right)\right\}=\theta\left(\rho_{1}+\rho_{2}-\rho_{3}\right) \theta\left(\rho_{2}+\rho_{3}-\rho_{1}\right) \theta\left(\rho_{3}+\rho_{1}-\rho_{2}\right)
$$

equals 1 when one can compose a triangle with sides $\rho_{1}, \rho_{2}, \rho_{3}$, and 0 otherwise.

Three-particle phase space in D dimensions (continued)

Denoting $\sigma_{i}=\sqrt{\rho_{i}^{2}+m_{i}^{2}}$ (so that $\sigma_{1}+\sigma_{2}+\sigma_{3}=p$, due to a δ function), integrating over x^{0} and introducing Mandelstam-type variables

$$
s=p^{2}+m_{3}^{2}-2 p \sigma_{3}, \quad t=p^{2}+m_{1}^{2}-2 p \sigma_{1}, \quad u=p^{2}+m_{2}^{2}-2 p \sigma_{2},
$$

satisfying

$$
\begin{equation*}
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+p^{2} \equiv w_{0} \tag{*}
\end{equation*}
$$

we get another integral representation (the integration limits are discussed below),

$$
I_{3}^{(D)}=\frac{\pi^{D-2}}{4 p^{D-2} \Gamma(D-2)} \iiint \mathrm{d} s \mathrm{~d} t \mathrm{~d} u \delta\left(s+t+u-w_{0}\right)[\Phi(s, t, u)]^{(D-4) / 2} \theta\{\Phi(s, t, u)\}
$$

where

$$
\Phi(s, t, u)=-\frac{1}{16 p^{2}} \lambda\left\{\lambda\left(s, m_{3}^{2}, p^{2}\right), \lambda\left(t, m_{1}^{2}, p^{2}\right), \lambda\left(u, m_{2}^{2}, p^{2}\right)\right\}
$$

can also be written in a more familiar Kibble cubic form (provided that $(*)$ holds)

$$
\begin{aligned}
\Phi(s, t, u)= & s t u-s\left(m_{1}^{2} m_{2}^{2}+p^{2} m_{3}^{2}\right)-t\left(m_{2}^{2} m_{3}^{2}+p^{2} m_{1}^{2}\right)-u\left(m_{3}^{2} m_{1}^{2}+p^{2} m_{2}^{2}\right) \\
& +2\left(m_{1}^{2} m_{2}^{2} m_{3}^{2}+p^{2} m_{1}^{2} m_{2}^{2}+p^{2} m_{2}^{2} m_{3}^{2}+p^{2} m_{3}^{2} m_{1}^{2}\right)
\end{aligned}
$$

The Dalitz-Kibble integration area

The maximal values $\left(P_{s}, P_{t}, P_{u}\right)$:
$s_{\text {max }}=\left(p-m_{3}\right)^{2}$,
$t_{\max }=\left(p-m_{1}\right)^{2}$,
$u_{\max }=\left(p-m_{2}\right)^{2}$.
The minimal values $\left(O_{s}, O_{t}, O_{u}\right)$:
$s_{\text {min }}=\left(m_{1}+m_{2}\right)^{2}$,
$t_{\text {min }}=\left(m_{2}+m_{3}\right)^{2}$,
$u_{\text {min }}=\left(m_{1}+m_{3}\right)^{2}$.

Moreover, due to the theta function $\theta\{\Phi(s, t, u)\}$ the region of integration is in fact restricted by the interior of the cubic curve $\Phi(s, t, u)=0$.

The function $\Phi(s, t, u)$ has a maximum within the region of integration.
For equal masses, $\Phi_{\max }=\frac{1}{27} p^{2}\left(p^{2}-9 m^{2}\right)^{2}$ occurs at $s=t=u=\frac{1}{3}\left(p^{2}+3 m^{2}\right)$.
For the general unequal masses, one needs to solve a fourth-order algebraic equation to find the position of the maximum.

Geometrical interpretation

Let us introduce
[A. I. Davydychev, R. Delbourgo, J. Math. Phys. 39 (1998) 4299]

$$
c_{12}=\frac{s-m_{1}^{2}-m_{2}^{2}}{2 m_{1} m_{2}}, \quad c_{23}=\frac{t-m_{2}^{2}-m_{3}^{2}}{2 m_{2} m_{3}}, \quad c_{13}=\frac{u-m_{1}^{2}-m_{3}^{2}}{2 m_{1} m_{3}} .
$$

Then, the function $\Phi(s, t, u)$ can be presented as a Gram determinant,

$$
\Phi(s, t, u)=4 m_{1}^{2} m_{2}^{2} m_{3}^{2}\left|\begin{array}{ccc}
1 & c_{12} & c_{13} \\
c_{12} & 1 & c_{23} \\
c_{13} & c_{23} & 1
\end{array}\right|
$$

For $D=4$, we get (the integration extends over $c_{j l} \geq 1$)

$$
\begin{aligned}
I_{3}= & \frac{2 \pi^{2}}{p^{2}} m_{1}^{2} m_{2}^{2} m_{3}^{2} \iiint \mathrm{~d} c_{12} \mathrm{~d} c_{13} \mathrm{~d} c_{23} \theta\left(\left|\begin{array}{ccc}
1 & c_{12} & c_{13} \\
c_{12} & 1 & c_{23} \\
c_{13} & c_{23} & 1
\end{array}\right|\right) \\
& \times \delta\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+2 m_{1} m_{2} c_{12}+2 m_{2} m_{3} c_{23}+2 m_{1} m_{3} c_{13}-p^{2}\right)
\end{aligned}
$$

Geometrical interpretation (continued)

If we were to interpret $c_{j l}$ as the cosines of the angles between the m_{j} and m_{l} sides of a vertex of a parallelepiped then all these quantities would have a straightforward geometrical interpretation:
$\Phi(s, t, u) \leftrightarrow 4\{\text { volume of parallelepiped }\}^{2}$, the δ function would tell us that the "principal" diagonal should be equal to p, the quantities \sqrt{s}, \sqrt{t} and \sqrt{u} could be identified as the diagonals of the faces, the quantities

$\frac{p^{2}+m_{1}^{2}-t}{2 p m_{1}}, \quad \frac{p^{2}+m_{2}^{2}-u}{2 p m_{2}} \quad$ and $\quad \frac{p^{2}+m_{3}^{2}-s}{2 p m_{3}}$
could be understood as cosines of the angles between the diagonal p and the m_{i} sides of the parallelepiped.

Kibble cubic characteristics

To remind, $\quad s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+p^{2} \equiv w_{0}$.
Suppose

$$
\left(s_{0}, t_{0}, w_{0}-s_{0}-t_{0}\right), \quad\left(s_{0}, w_{0}-s_{0}-u_{0}, u_{0}\right), \quad\left(w_{0}-t_{0}-u_{0}, t_{0}, u_{0}\right)
$$

all are the roots of the equation $\Phi(s, t, u)=0$. Then, we can present $\Phi(s, t, u)$ as

$$
\Phi(s, t, u)=s t u-s t_{0} u_{0}-s_{0} t u_{0}-s_{0} t_{0} u+2 s_{0} t_{0} u_{0}
$$

Defining

$$
c_{t u} \equiv \sqrt{\frac{t_{0} u_{0}}{t u}}, \quad c_{s t} \equiv \sqrt{\frac{s_{0} t_{0}}{s t}}, \quad c_{s u} \equiv \sqrt{\frac{s_{0} u_{0}}{s u}},
$$

we arrive at another Gram determinant representation for $\Phi(s, t, u)$,

$$
\Phi(s, t, u)=s t u\left|\begin{array}{ccc}
1 & c_{t u} & c_{s t} \\
c_{t u} & 1 & c_{s u} \\
c_{s t} & c_{s u} & 1
\end{array}\right|
$$

Kibble cubic characteristics (continued)

There are (at least) two sets of solutions that can be described as

$$
s_{0}=\frac{A_{1} A_{2}}{A_{3}}, \quad t_{0}=\frac{A_{2} A_{3}}{A_{1}}, \quad u_{0}=\frac{A_{1} A_{3}}{A_{2}}
$$

so that

$$
\Phi(s, t, u)=s t u-A_{1}^{2} t-A_{2}^{2} u-A_{3}^{2} s+2 A_{1} A_{2} A_{3} .
$$

The first set of solutions corresponds to

$$
A_{1} \equiv p m_{1}+m_{2} m_{3}, \quad A_{2} \equiv p m_{2}+m_{3} m_{1}, \quad A_{3} \equiv p m_{3}+m_{1} m_{2}
$$

For this set, we have

$$
c_{t u}=\frac{p m_{3}+m_{1} m_{2}}{\sqrt{t u}}, \quad c_{s t}=\frac{p m_{2}+m_{1} m_{3}}{\sqrt{s t}}, \quad c_{s u}=\frac{p m_{1}+m_{2} m_{3}}{\sqrt{s u}} .
$$

Note that if we change $p \rightarrow-p$, this would also be a solution, which would correspond to a "non-physical" branch of the Kibble cubic.

Kibble cubic characteristics (continued)

There are (at least) two sets of solutions that can be described as

$$
s_{0}=\frac{A_{1} A_{2}}{A_{3}}, \quad t_{0}=\frac{A_{2} A_{3}}{A_{1}}, \quad u_{0}=\frac{A_{1} A_{3}}{A_{2}}
$$

so that

$$
\Phi(s, t, u)=s t u-A_{1}^{2} t-A_{2}^{2} u-A_{3}^{2} s+2 A_{1} A_{2} A_{3} .
$$

The second set of solutions corresponds to
$A_{1} \equiv \frac{1}{2}\left(p^{2}+m_{1}^{2}-m_{2}^{2}-m_{3}^{2}\right), \quad A_{2} \equiv \frac{1}{2}\left(p^{2}-m_{1}^{2}+m_{2}^{2}-m_{3}^{2}\right), \quad A_{3} \equiv \frac{1}{2}\left(p^{2}-m_{1}^{2}-m_{2}^{2}+m_{3}^{2}\right)$.
For this set, we get
$c_{t u}=\frac{p^{2}-m_{1}^{2}-m_{2}^{2}+m_{3}^{2}}{2 \sqrt{t u}}, \quad c_{s t}=\frac{p^{2}-m_{1}^{2}+m_{2}^{2}-m_{3}^{2}}{2 \sqrt{s t}}, \quad c_{s u}=\frac{p^{2}+m_{1}^{2}-m_{2}^{2}-m_{3}^{2}}{2 \sqrt{s u}}$.

Kibble cubic characteristics (continued)

In the Dalitz-Kibble plot we connect the points for each of the two sets by dashed lines, introducing subscripts [1] and [2].
The two "dashed" triangles indicate that the two sets are complementary to each other: the boundary of the Dalitz plot confines $t u$, st and $s u$ as follows:

$$
\begin{aligned}
\left(t_{0} u_{0}\right)_{[1]} & \leq t u \\
\left(s_{0} t_{0}\right)_{[1]} & \leq s t \\
\left(t_{0} u_{0}\right)_{[2]} & \leq\left(s_{0} t_{0}\right)_{[2]} \\
\left(s_{0} u_{0}\right)_{[1]} & \leq s u \leq\left(s_{0} u_{0}\right)_{[2]} .
\end{aligned}
$$

Kibble cubic characteristics (continued)

Consider the values of the "cosines" $c_{s u}, c_{s t}$ and $c_{t u}$.
For the first set, $c_{s u}, c_{s t}$ and $c_{t u}$ would vary between 1 and $\cos \varphi_{i}(i=1,2,3)$, respectively, where
$\cos \varphi_{1}=\frac{2\left(p m_{1}-m_{2} m_{3}\right)}{p^{2}+m_{1}^{2}-m_{2}^{2}-m_{3}^{2}}, \quad \cos \varphi_{2}=\frac{2\left(p m_{2}-m_{3} m_{1}\right)}{p^{2}-m_{1}^{2}+m_{2}^{2}-m_{3}^{2}}, \quad \cos \varphi_{3}=\frac{2\left(p m_{3}-m_{1} m_{2}\right)}{p^{2}-m_{1}^{2}-m_{2}^{2}+m_{3}^{2}}$.
Their sines can be presented as
$\sin \varphi_{1}=\frac{\sqrt{Q_{+}}}{p^{2}+m_{1}^{2}-m_{2}^{2}-m_{3}^{2}}, \quad \sin \varphi_{2}=\frac{\sqrt{Q_{+}}}{p^{2}-m_{1}^{2}+m_{2}^{2}-m_{3}^{2}}, \quad \sin \varphi_{3}=\frac{\sqrt{Q_{+}}}{p^{2}-m_{1}^{2}-m_{2}^{2}+m_{3}^{2}}$.

For the second set, $c_{s u}, c_{s t}$ and $c_{t u}$ would vary between 1 and $1 / \cos \varphi_{i}$. This means that we need to understand them in the sense of analytic continuation.

Bridge between integral representations

For $D=4$, using the representation for $\Phi(s, t, u)$ in terms of s_{0}, t_{0} and u_{0}, we get $I_{3}=\frac{\pi^{2}}{4 p^{2}} \iiint \mathrm{~d} s \mathrm{~d} t \mathrm{~d} u \delta\left(s+t+u-w_{0}\right) \theta\left(s t u-s t_{0} u_{0}-s_{0} t u_{0}-s_{0} t_{0} u+2 s_{0} t_{0} u_{0}\right)$, with $w_{0}=p^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}$. Integrating over u yields

$$
I_{3}=\frac{\pi^{2}}{4 p^{2}} \iint \mathrm{~d} s \mathrm{~d} t \theta\left\{\left(s t-s_{0} t_{0}\right)\left(w_{0}-s-t\right)-s t_{0} u_{0}-s_{0} t u_{0}+2 s_{0} t_{0} u_{0}\right\}
$$

Integrating over t, we get difference between the roots of the quadratic argument,
$\frac{1}{s} \sqrt{s^{4}-2 w_{0} s^{3}+\left(w_{0}^{2}+2 s_{0} t_{0}+2 s_{0} u_{0}-4 t_{0} u_{0}\right) s^{2}-2\left(w_{0} t_{0}+w_{0} u_{0}-4 u_{0} t_{0}\right) s_{0} s+s_{0}^{2}\left(t_{0}-u_{0}\right)^{2}}$.
For both sets of $\left(s_{0}, t_{0}, u_{0}\right)$ the square root takes the familiar form,

$$
I_{3}=\frac{\pi^{2}}{4 p^{2}} \int_{s_{2}}^{s_{3}} \frac{\mathrm{~d} s}{s} \sqrt{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s_{3}-s\right)\left(s_{4}-s\right)}
$$

Three-particle phase space in odd dimensions ($D=3,5, \ldots$)
Starting from the (non-symmetric) D-dimensional representation,

$$
I_{3}^{(D)}=\frac{\pi^{D-1}}{(4 p)^{D-2} \Gamma^{2}\left(\frac{D-1}{2}\right)} \int_{s_{2}}^{s_{3}} \frac{\mathrm{~d} s}{s^{D / 2-1}}\left[\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s_{3}-s\right)\left(s_{4}-s\right)\right]^{(D-3) / 2}
$$

we can easily see (just substituting $s=x^{2}$) that all odd-dimensional phase-space integrals can be expressed in terms of polynomial functions

$$
\begin{aligned}
I_{3}^{(3)}= & \frac{\pi^{2}}{2 p}\left(p-m_{1}-m_{2}-m_{3}\right) \\
I_{3}^{(5)}= & \frac{\pi^{4}}{60 p^{3}}\left(p-m_{1}-m_{2}-m_{3}\right)^{3}\left[\frac{1}{7}\left(p-m_{1}-m_{2}-m_{3}\right)^{4}+\left(m_{1}+m_{2}+m_{3}\right) p^{3}\right. \\
& -2\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right) p^{2}+\left(m_{1}^{3}+m_{2}^{3}+m_{3}^{3}\right) p+12 m_{1} m_{2} m_{3} p \\
& \left.-\left(m_{1}+m_{2}+m_{3}\right)\left(m_{1}+m_{2}\right)\left(m_{2}+m_{3}\right)\left(m_{3}+m_{1}\right)+4 m_{1} m_{2} m_{3}\left(m_{1}+m_{2}+m_{3}\right)\right]
\end{aligned}
$$

etc., which are explicitly symmetric in the masses m_{i}.

Three-particle phase space in two dimensions

Consider the case $D=2$. Then, we get just the elliptic integral $K(k)$,

$$
I_{3}^{(2)}=\int_{s_{2}}^{s_{3}} \frac{\mathrm{~d} s}{\sqrt{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s_{3}-s\right)\left(s_{4}-s\right)}}=\frac{2}{\sqrt{Q_{+}}} K(k)
$$

This is explicitly symmetric in the masses, because Q_{+}, Q_{-}and k are symmetric,
$Q_{+} \equiv\left(p+m_{1}+m_{2}+m_{3}\right)\left(p+m_{1}-m_{2}-m_{3}\right)\left(p-m_{1}+m_{2}-m_{3}\right)\left(p-m_{1}-m_{2}+m_{3}\right)$,
$Q_{-} \equiv\left(p-m_{1}-m_{2}-m_{3}\right)\left(p-m_{1}+m_{2}+m_{3}\right)\left(p+m_{1}-m_{2}+m_{3}\right)\left(p+m_{1}+m_{2}-m_{3}\right)$,
$k \equiv \sqrt{\frac{Q_{-}}{Q_{+}}}$.

We can also obtain a very useful relation between the three $Z\left(\varphi_{i}, k\right)$ functions,

$$
Z\left(\varphi_{1}, k\right)+Z\left(\varphi_{2}, k\right)+Z\left(\varphi_{3}, k\right)=k^{2} \sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3} .
$$

Three-particle phase space in four dimensions

Use a trick of inserting the unity (look at the argument of the δ-function), to get rid of $1 / s, 1 / t$ and $1 / u\left(t_{i}\right.$ and u_{i} are obtained from s_{i} by permutation of masses):

$$
\begin{aligned}
& \frac{\pi^{2}}{4 p^{2}} \iiint \mathrm{~d} s \mathrm{~d} t \mathrm{~d} u \delta\left(s+t+u-w_{0}\right) \theta\left(s t u-s t_{0} u_{0}-s_{0} t u_{0}-s_{0} t_{0} u+2 s_{0} t_{0} u_{0}\right) \\
& =\frac{\pi^{2}}{4 p^{2}} \iiint \mathrm{~d} s \mathrm{~d} t \mathrm{~d} u \frac{s+t+u}{w_{0}} \delta\left(s+t+u-w_{0}\right) \theta\left(s t u-s t_{0} u_{0}-s_{0} t u_{0}-s_{0} t_{0} u+2 s_{0} t_{0} u_{0}\right) \\
& =\frac{\pi^{2}}{4 p^{2} w_{0}}\left\{\int_{s_{2}}^{s_{3}} \mathrm{~d} s \sqrt{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s_{3}-s\right)\left(s_{4}-s\right)}\right. \\
& \quad+\int_{t_{2}}^{t_{3}} \mathrm{~d} t \sqrt{\left(t-t_{1}\right)\left(t-t_{2}\right)\left(t_{3}-t\right)\left(t_{4}-t\right)} \\
& \left.\quad+\int_{u_{2}}^{u_{3}} \mathrm{~d} u \sqrt{\left(u-u_{1}\right)\left(u-u_{2}\right)\left(u_{3}-u\right)\left(u_{4}-u\right)}\right\}
\end{aligned}
$$

Three-particle phase space in four dimensions

Collecting the results for all three integrals and using the relation for Z-functions, we arrive at the symmetric result

$$
\begin{aligned}
I_{3}=\frac{\pi^{2}}{8 p^{2}} & \left\{\sqrt{Q_{+}}\left(p^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)[E(k)-K(k)]\right. \\
& \left.+Q_{+} K(k)\left[\frac{Z\left(\varphi_{1}, k\right)}{\sin ^{2} \varphi_{1}}+\frac{Z\left(\varphi_{2}, k\right)}{\sin ^{2} \varphi_{2}}+\frac{Z\left(\varphi_{3}, k\right)}{\sin ^{2} \varphi_{3}}\right]\right\}
\end{aligned}
$$

where

$$
\sin \varphi_{1}=\frac{\sqrt{Q_{+}}}{p^{2}+m_{1}^{2}-m_{2}^{2}-m_{3}^{2}}, \quad \sin \varphi_{2}=\frac{\sqrt{Q_{+}}}{p^{2}-m_{1}^{2}+m_{2}^{2}-m_{3}^{2}}, \quad \sin \varphi_{3}=\frac{\sqrt{Q_{+}}}{p^{2}-m_{1}^{2}-m_{2}^{2}+m_{3}^{2}}
$$

This result can also be presented in terms of the elliptic integrals Π, using

$$
K(k) Z\left(\varphi_{i}, k\right)=\cot \varphi_{i} \sqrt{1-k^{2} \sin ^{2} \varphi_{i}}\left[\Pi\left(k^{2} \sin ^{2} \varphi_{i}, k\right)-K(k)\right]
$$

Three-particle phase space in six dimensions

Using the same approach we can also obtain symmetric results $D=6$ (and higher dimensions):

$$
\begin{aligned}
I_{3}^{(6)}= & \frac{\pi^{4}}{144 p^{4}}\left\{\frac { Q _ { + } ^ { 1 / 2 } } { 2 0 } [E (k) - K (k)] \left[192\left(p^{8}+m_{1}^{8}+m_{2}^{8}+m_{3}^{8}\right)-112\left(p^{4}+m_{1}^{4}+m_{2}^{4}+m_{3}^{4}\right)^{2}\right.\right. \\
& -6\left(p^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)^{4}-156\left(p^{6}+m_{1}^{6}+m_{2}^{6}+m_{3}^{6}\right)\left(p^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right) \\
& \left.+83\left(p^{4}+m_{1}^{4}+m_{2}^{4}+m_{3}^{4}\right)\left(p^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)^{2}\right] \\
& +\frac{1}{40} Q_{-} Q_{+}^{1 / 2} K(k)\left[3\left(p^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)^{2}-16\left(p^{4}+m_{1}^{4}+m_{2}^{4}+m_{3}^{4}\right)\right] \\
& +\frac{3}{4} \frac{Q_{+}^{5 / 2} K(k)}{\sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3}}\left[\frac{Z\left(\varphi_{1}, k\right)}{\sin ^{2} \varphi_{1}}+\frac{Z\left(\varphi_{2}, k\right)}{\sin ^{2} \varphi_{2}}+\frac{Z\left(\varphi_{3}, k\right)}{\sin ^{2} \varphi_{3}}\right] \\
& \left.-\frac{3}{8} Q_{+}^{2}\left(p^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right) K(k)\left[\frac{Z\left(\varphi_{1}, k\right)}{\sin ^{4} \varphi_{1}}+\frac{Z\left(\varphi_{2}, k\right)}{\sin ^{4} \varphi_{2}}+\frac{Z\left(\varphi_{3}, k\right)}{\sin ^{4} \varphi_{3}}\right]\right\} .
\end{aligned}
$$

Summary and conclusions

- We have considered several representations for the three-particle phase space (in terms of the Kibble cubic $\Phi(s, t, u)$, etc.), exploring their symmetry properties and geometrical meaning.
- A number of representations are given for N-particle phase space, for an arbitrary dimension D.
- It was shown that the angles φ_{i} are convenient to describe the results for the three-particle phase-space integral I_{3}.
- The result for I_{3} in four dimensions (given in terms of the Jacobian Z function) is very compact and explicitly symmetric with respect to all masses m_{i}.
- In similar way, explicitly symmetric results for higher dimensions ($D=6$, etc.) can be also obtained.

