Summer School "Theory Challenges for LHC Physics" Workshop "Calculations for Modern and Future Colliders"

Precision measurements with polarized beams

Sabine Riemann, DESY JINR Dubna, 29 July 2015

outline

Precision measurements with polarized lepton beams

- Future collider projects see talk of J. Mnich, 20 July
 - Physics with polarized beams at lepton colliders
- Precision measurements
 - Beam polarization
 - Polarimetry
 - Luminosity
- Summary

Future lepton collider projects (see also talk of J. Mnich)

Linear collider (e+e-)

- ILC; CLIC
- ILC: technology at hand, realization in Japan??

E_{cm}

- 250GeV 1TeV, 91GeV (ILC)
- 500GeV 3TeV (CLIC)
- $L \approx 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (~500fb⁻¹/year)
- → Stat. uncertainty ~ $10^{-3}...10^{-2}$

Beam polarization

e- beam P = 80-90%e+ beam ILC: P = 30% baseline; 60% upgrade CLIC: $P \ge 60\%$ upgrade

Circular collider

- FCC-ee, TLEP
- CEPC

Projects under study

 E_{cm}

91 GeV, 160GeV, 240GeV, 350GeV

μ Collider

 $L \approx 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$ (4 experiments)

→ Stat. uncertainty $\leq 10^{-3}$

Beam polarization

Desired (?)

Precision measurements

- Precise theoretical predictions
- The right machine (E_{cm} , L, P) + detector
 - Energy from Z pole up to TeV
 - Luminosity as high as possible
 - Polarization
 - Enhancement and suppression of processes
 - Polarization of e- beam only or of both, e+ and e- beam ?
- Precise measurements & diagnostics

High flexibility to be ready for the unexpected

Goal of polarization at SLD

Lessons from LEP/SLD: Measurement of $sin^2\theta_W^{eff}$

LEP

- Unpolarized e+, e- beams,
- 17x10⁶ Z events
- relative precision on sin²θ_{eff(lept)} ≈ 1.8x10⁻³

SLD:

7/29/2015

- Polarized e- beam
- 5x10⁵ Z events
- relative precision on sin²θ_{eff(lept)} ≈ 1.1x10⁻³

Beam polarization can increase precision substantially

Phys.Rep. 427(2006)257 [hep-ex/0509008]

Beam polarization ($P_{e\pm}$)

Physics goal with polarized lepton beams: a short (but incomplete) overview

- Some facts
- Some example processes

Beam polarization $(P_{e\pm})$

- Measurement with equal number of (+ -) and (- +) helicity pattern only increases statistics if both beams are polarized
- \rightarrow Enhancement of effective luminosity with e+ polarization:

 $L_{eff} = (1-P_{e+}P_{e-}) \rightarrow \text{for } (P_{e+};P_{e-}) = (\mp 80\%; \pm 60\%)$: L is factor ~1.5 higher

Left-Right asymmetry A_{LR}

- A_{LR} is sensitive to parity violation $A_{LR} = \frac{\sigma_{LR} - \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}} \left(\frac{1}{P_{eff}} \right) \stackrel{\sim}{=} \frac{N_{LR} - N_{RL}}{N_{LR} + N_{RL}} \left(\frac{1}{P_{eff}} \right)$
- Effective polarization P_{eff} is larger than e-polarization
- At measurements with high statistics polarization uncertainty could dominate $\Delta A_{LR} \rightarrow$ limited precision
- Error propagation $\Leftrightarrow \Delta P_{eff} < \Delta P_{e\pm} \rightarrow e+ polarization helps!!$

SLD: (Phys.Rept. 427(2006)257) $\Delta P/P \sim 0.50\%$ ILC (goal): (List et al., JINST 4:P10015,2009) $\Delta P_e/P_e = 0.25\%$ $\Delta P_{eff}/P_{eff} = 0.12\%$ (P_{e-}=0.8, P_{e+} =0.3)

e+e- Higgs factory

Higgs Coupling to the Z

Select events:

e+e- \rightarrow Zh and Z $\rightarrow \mu\mu$,ee

Fit to the spectrum of recoil mass of both leptons → Higgs mass and coupling

Peak position ⇔ Higgs mass

 $\Delta m_h < 30 \text{ MeV}$

arXiv:1506.05992

Peak height $\Leftrightarrow \sigma_{Zh} \sim g_{Zh}^2$

- → Model-independent measurement of Zh coupling (percent-level)
- \rightarrow Higgs total decay width

Higher lumi improves precision

Goal with polarized beams

arXiv:1506.05992

with polarized beams:

- Enhancement of Higgs Strahlungs process by factor (1-P_e-P_{e+}) if e+ and e- are polarized (e⁺_L e⁻_L and e⁺_R e⁻_R are suppressed)
- Enhancement of WW, ZZ Fusion processes

Top-Quark coupling: ttX

e⁺

Z/γ

- Idea (Amjad et al.,arXiv:1307.8102):
 - use polarized beams
 - Discriminate top coupling to Z and γ
- ttX vertex :

$$\Gamma_{\mu}^{t\bar{t}X} = ie \left[\gamma_{\mu} \left(\widetilde{F}_{1V}^{X} + \gamma_{5} \widetilde{F}_{1A}^{X} \right) + \frac{\left(q - \overline{q} \right)_{\mu}}{2m_{t}} \left(\widetilde{F}_{2V}^{X} + \gamma_{5} \widetilde{F}_{2A}^{X} \right) \right]$$

Form factors and their SM values (Born level):

$$\begin{split} \widetilde{F}_{1v}^{x} &= -\left(F_{1v}^{x} + F_{2v}^{x}\right) & \widetilde{F}_{2v}^{x} = F_{2v}^{x} \\ F_{1v}^{\gamma} &= -\frac{2}{3} & F_{1v}^{z} = -\frac{1}{4s_{w}c_{w}} \left(1 - \frac{8}{3}s_{w}^{2}\right) & F_{2v}^{\gamma} = Q_{t} \frac{\left(g - 2\right)}{2} & F_{2v}^{z} \\ \widetilde{F}_{1A}^{x} &= -F_{1A}^{x} & \widetilde{F}_{2A}^{x} = -iF_{2A}^{x} & d = dipole \text{ moment}; \\ F_{1A}^{\gamma} &= 0 & F_{1A}^{z} = \frac{1}{4s_{w}c_{w}} & F_{2A}^{x} \propto d_{A}^{x} & F_{2A}^{z} \approx d_{A}^{x} \end{split}$$

S. Riemann, Lepton colliders with pol beams, CALC2015, Dubna

Top-quark coupling

- Extract form factors in groups assuming SM for remaining groups
- Polarization is decisive to distinguish top coupling to Z and γ
- sign of form factors is fixed by γZ interference

Achieved in this study: relative uncertainty of ttX coupling $\leq 1\%$

Top-quark coupling

arXiv:1307.8102

Statistical precision on CP conserving form factors expected at LHC (3000fb⁻¹) and ILC (500fb⁻¹, Pe+= ± 0.8 ,Pe+= ± 0.3)

New physics

Top coupling is sensitive to new physics:

Comparison of g_L, g_R (SM) with composite Higgs models

Further example: t-channel processes:

 helicities of initial and final state are directly coupled, but independent of the helicity of the second incoming beam particle

 As a unique feature of Bhabha scattering, the J=0 state can isolate the t-channel for vector currents from scalar s-channel exchange

Key physics explorations at high-energy e+e- colliders

Energy	Reaction	Physics Goal	Polarization
91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak	Left-Right asymmetry
160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass	
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings	Enhancement of lumi
350–400 GeV	$e^+e^- \rightarrow t\bar{t}$	top quark mass and couplings	Left-Right asymmetry
	$e^+e^- \rightarrow WW$	precision W couplings	Enhancement of lumi
	$e^+e^- \rightarrow \nu \overline{\nu} h$	precision Higgs couplings	Enh. of process
500 GeV	$e^+e^- \rightarrow f\overline{f}$	precision search for Z'	eft-Right asymmetry mi
	$e^+e^- \rightarrow t\bar{t}h$	Higgs coupling to top	
	$e^+e^- \rightarrow Zhh$	Higgs self-coupling	Enhancement of lumi
	$e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$	search for supersymmetry	Suppr of SM process
	$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states	Suppl. of Sivi process
700–1000 GeV	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling	
	$e^+e^- \rightarrow \nu \overline{\nu} V V$	composite Higgs sector	Enhancement of
	$e^+e^- \rightarrow \nu \overline{\nu} t \overline{t}$	composite Higgs and top	process
	$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry	Suppr. of SM process

Physics at the Z Pole

- Ultra-precision electroweak measurements
- Planned Luminosity
 - GigaZ (ILC): 10⁹ Z bosons
 - FCC-ee (TLEP): up to 10¹³ Z bosons
- Beam polarization important for
 - $-A_{LR}$ measurement
 - Energy measurement (ring collider)

A_{LR} measurement at Z peak "Blondel Scheme" with polarized e+ and e-

Most sensitive to weak mixing angle: A_{LR}

$$A_{LR} = \frac{A_{LR}^{meas}}{P} = A_e = \frac{2v_e a_e}{v_e^2 + a_e^2}$$
 (independent of the final state) $\frac{v_e}{a_e} = 1 - 2\sin^2 \theta_{eff}^{lept}$

- Perform 4 independent measurements with different helicity combinations
 $$\begin{split} \sigma_{\pm\pm} &= \frac{1}{4} \, \sigma_0 \Big[1 + P_{e^+} P_{e^-} + A_{LR} \Big(\pm P_{e^+} \pm P_{e^-} \Big) \Big] &= 0 \text{ (SM) if both beams 100\% polarized} \\ \sigma_{\pm\pm} &= \frac{1}{4} \, \sigma_0 \Big[1 - P_{e^+} P_{e^-} + A_{LR} \Big(\mp P_{e^+} \pm P_{e^-} \Big) \Big] \end{split}$$
- determination of P_{e+} and P_{e-} , and A_{LR} simultaneously ($A_{LR} \neq 0$) (equal polarization for + and helicity):

$$A_{LR} = \left[\frac{\left(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--}\right)}{\left(\sigma_{+-} + \sigma_{-+} + \sigma_{++} + \sigma_{--}\right)} \cdot \frac{\left(-\sigma_{+-} + \sigma_{-+} - \sigma_{++} + \sigma_{--}\right)}{\left(-\sigma_{+-} + \sigma_{-+} + \sigma_{+-} - \sigma_{--}\right)}\right]^{\frac{1}{2}}$$

$$= \left[\left(\sigma_{++} + \sigma_{-+} - \sigma_{++} - \sigma_{--}\right) + \left(\mp \sigma_{+-} \pm \sigma_{-+} - \sigma_{-+} + \sigma_{--}\right)\right]^{\frac{1}{2}}$$

$$\mathbf{P}_{e^{\pm}} = \left[\frac{(\sigma_{+-} + \sigma_{-+} + \sigma_{++} + \sigma_{--})}{(\sigma_{+-} + \sigma_{-+} + \sigma_{++} + \sigma_{--})} \cdot \frac{(+\sigma_{+-} \pm \sigma_{-+} + \sigma_{++} + \sigma_{--})}{(\mp \sigma_{+-} \pm \sigma_{-+} + \sigma_{++} - \sigma_{--})}\right]$$

- A_{LR} can be measured independently from polarimeters
- Loss in precision is small if only 10% of luminosity is used for σ_{++} and σ_{--}

A_{LR} measurement at Z peak (cont'd)

- However, some corrections are necessary...
 - Blondel scheme assumes that
 - polarization for + and helicity state is the same;
 - e+ and e- beam polarizations are uncorrelated
 - → difference of absolute values of helicity states has to be known; need polarimeters at IP for measuring polarization difference between + and – helicity states
 - Beamstrahlung effects, ...
- Expectation:

GigaZ (ILC): $\Delta sin^2 \theta eff$ is improved by factor ~1/13 to LEP/SLD

Circular colliders (FCC-ee, CEPC):
 need polarized beams to measure A_{LR}

Polarization in circular high energy e+e- colliders

- Transverse polarization in storage rings
 - Sokolov-Ternov effect
 - Beam energy measurement using resonant depolarization
 - Transverse polarization at FCC-ee
- Longitudinal polarization for physics

- Precision measurement of energy at LEP:
 - Highest precision using method of resonant depolarisation
 - ∆E/E ~ 10⁻⁵
 - \rightarrow precision $\Delta m_z = 2.1 MeV$ with 1.7 MeV from energy measurement
- Measurement of energy at linear e+e- colliders (ILC, CLIC)
 - method of resonant depolarization does not work
 - Goal (ILC): 1-2 x 10⁻⁴
 - Energy spectrometers before and after collision point to measure energy distribution

Polarization in storage rings

Transverse polarization

- Spin $\frac{1}{2}$ particle in homogeneous magnetic field $\rightarrow 2$ stable states: $\vec{a} \uparrow \uparrow \vec{R} = \vec{a} \uparrow \downarrow \vec{n}$
 - \rightarrow 2 stable states: $\vec{s} \uparrow \uparrow \vec{B} \quad \vec{s} \uparrow \downarrow \vec{B}$

Sokolov-Ternov effect:

 Synchrotron emission has a small spin-flip probability, with large asymmetry in favor of orienting the magnetic moment of the particles along the guiding magnetic dipole field.

→ self polarization

- In a perfect machine large asymptotic transverse polarization (max 92.4%) builds up
- In a real machine depolarization effects occur → asymptotic polarization is reduced (P_∞ < P_{ST} = 0.924); is achieved after effective polarization raise time τ_p^{eff}

$$P_{\infty} = 0.924 \frac{1}{1 + \frac{\tau_{\rm P}}{\tau_{\rm d}}} \qquad \qquad \tau_{\rm p}^{\rm eff} = \tau_{\rm P} \frac{1}{1 + \frac{\tau_{\rm P}}{\tau_{\rm d}}}$$

- Ideal storage ring: polarization is along vertical direction
- Real storage ring: perturbation \rightarrow spin precession

Spin precession

Motion of spin vector of relativistic electron in presence of magnetic and electric field is described by Thomas-BMT (Bargmann, Michel, Telegdi) equation

$$\frac{\mathrm{d}\vec{\mathrm{s}}}{\mathrm{d}\mathrm{t}} = \vec{\Omega}_{\mathrm{BMT}} \times \vec{\mathrm{s}}$$

with (neglecting electrical fields)

$$\vec{\Omega}_{\rm BMT} = -\frac{e}{\gamma m_0} \left[(1 + a\gamma) \vec{B}_{\perp} + (1 + a) \vec{B}_{\parallel} \right]$$
$$a = (g-2)/2$$

 Average over all particles of the number of spin oscillations per revolution is defined as spin tune (ideal storage ring)

$$\nu = \frac{f_{spin}}{f_{rev}} = \frac{a}{m_0 c^2} E_{beam}$$

• spin tune is related to the energy of the particle

Resonant depolarization

If a perturbation is in phase with the nominal spin precession the polarization vector is resonantly rotated away from the vertical direction

(in this example $fdep = 0.5 \cdot frev$).

- The RF-magnet field oscillating at a frequency f_{dep} is in resonance with the spin precession if:
 - $f_{dep} = (k \pm [v]) \cdot f_{rev} \qquad k = integer,$ $f_{rev} = revolution frequency in the ring$ **Depolarization**

With exciting artificial depolarizing resonance f_{dep} very precise beam energy measurement; $\Delta E/E \sim 10^{-5} \dots 10^{-6}$

Measurements of the artificially excited spin resonance (LEP):

E [MeV]

Transverse polarization in FCC-ee

- FCC: large radius, beam energy 45 80 GeV:
 - extremely long time to build up transverse polarization
 - Depolarization due to imperfections along the ring
- Useful level for energy calibration: 5-10%
 - → Sokolov-Ternov effect is not the best option to polarize beams (at least for E_{beam} = 45GeV)
 - introducing wiggler magnets
 - ightarrow increasing synchrotron radiation
 - \rightarrow decrease polarization build-up time
 - But: wigglers increase beam energy spread
- Beam energy spread:
 - Beam spread enhances depolarization due to synchrotron motion
 - At LEP beam energy spread destroyed polarization above 60 GeV
- Polarization at FCC-ee is under study

Longitudinal polarization for physics

- Linear colliders (ILC, CLIC):
 - Sources generate longitudinally polarized e- (e+)
 - Spin rotators at arcs/turnarounds
 - Very low depolarization in accelerator (one-way)

• FCC-ee

- Inject polarized beams
- Spin manipulation: Spin rotators must be installed on either side of the interaction points to rotate the polarization direction from the vertical plane to the longitudinal plane and back. (→ 4×3,000 times per second)
- Needs studies and careful calculations based on details of a realistic design

- Spin rotation from transverse to longitudinal polarization before and after interaction point
- 'Frequent' helicity reversal to minimize systematic effects

- Polarization measurement
 - Principle
 - Precision
- Luminosity measurement

Polarization measurement

- Measurement of polarized cross section measurement of polarization
- To be measured: luminosity weighted average polarization at the interaction point
 - So far, all studies assume that this average polarization is known

$$\left\langle P_{Z}\right\rangle_{IP} = \frac{\int P_{Z}(t)L(t)dt}{\int L(t)dt}$$

- Goal (ILC)
 - determine luminosity-weighted polarization at per-mille level <> polarization error should not limit the precision of measurement

Principle of polarization measurement

 Compton polarimeters to measure e+ and e- polarization upstream and downstream the interaction point (IP)

 spin tracking to relate the measurements in the polarimeters to the polarization at the IP

Upstream Compton polarimeter

Compton scattering of polarized laser photons on e+, e-

fast measurement ⇔ O(10^6) Compton scattering events per second

- Energy spectrum of scattered e- (e+) depends on product of circular polarization of laser P_{γ} (left, right) and longitudinal polarization Pe-, Pe+
- Spectrometer chicane (4 dipoles): energy distribution → position distribution
- Measure asymmetry of scattered e± for L, R laser polarization → Pe±

Polarization measurement

- Upstream Compton Polarimeter: $\Delta P/P = 0.25\%$
 - For comparison: SLD achieved $\Delta P/P = 0.5\%$
- polarimeters measure the beam polarization 1.8km upstream and 140m downstream the IP
- Transport of polarized beam through beam delivery system <> spin manipulation

to measure polarization of spent beam (Dowstream polarimeter)

Polarization measurement

- Correction of this effect to get the luminosity-weighted polarization:
 - Extremely careful alignment of beam, laser and polarimeter required
 - Precise monitoring of luminosity, beam parameters, upstream polarimeter
 - More details see M. Beckmann, DESY-THESIS-2013-053
- Explore long-term polarization measurement from collision data (Blondel scheme, WW production)

Luminosity measurement

Luminosity measured using Bhabha scattering $L = \frac{N_{Bhabha}}{\sigma_{Bhabha}}$ • Cross section at small angles $\sigma_{Bhabha} \propto \frac{1}{s} \left(\frac{1}{\theta_{min}} - \frac{1}{\theta_{max}} \right)$

- Forward peak
 - precise knowledge of $\theta_{\text{min}} \Leftrightarrow$ Very precisely positioned luminosity monitor
 - ILC: $\theta_{min} = 31 \text{mrad}, \quad \theta_{max} = 78 \text{mrad}$

- Precise theoretical prediction
- Required precision of luminosity measurement
 - ILC: $\Delta L/L < 10^{-3}$ (LEP: lumi monitoring ~ 10⁻⁴)
 - ILC/GigaZ: $\Delta L/L \sim 10^{-4}$
 - TLEP: ? Even better…

Bhabha scattering generators

• BHLUMI for small-angle Bhabha scattering

- S. Jadach, W. Placzek, E. Richter-Was, Z. Was
- Theoretical error of low angle Bhabha scattering at LEP: 0.05 0.07%; room for improvement exists (vacuum polarization)
- GigaZ,...: Substantial improvement of theory precision below experimental error seems feasible
- BHWIDE generator for wide-angle Bhabha scattering
 - S. Jadach, W. Plazcek, Z. Was
 - precision up to 0.11% at LEP1
- But:
 - Both generators do not include beamstrahlung spectra
 - Both generators do not include explicitly beam polarization

Work done/in progress:

- Higher order corrections for Bhabha scattering (Gluza, Penin, Riemann)
- New Bhabha generator with polarization: Vladimir Makarenko (NC PHEP BSU, Minsk)

Energy and distribution of luminosity across the possible working points of e+e- colliders

Polarized beams in μ collider

- Muons have short lifetime excluded
- Muons are born polarized \rightarrow maintain polarization
- However, muons come from π decay (in flight)
 - $-\mu$ polarization depends on energy
 - have to separate muons with high energy
 - → Reduced luminosity
- Longitudinal polarization in interaction region → spin manipulation
- Polarized muon collider should be possible but needs large effort

Summary

- Polarized beams at lepton colliders increase the potential and the precision of measurements
- Beam polarization is very useful to discriminate new physics
 phenomena
- ILC, CLIC designed with polarized e- (e+) beams
- Precision measurements with polarized beams
 - Require excellent polarimetry and spin tracking to determine the luminosity weighted polarization at the collision
 - relative uncertainty of polarimeters at per-mille level required
- Polarization in very large circular lepton colliders (FCC-ee,...) is a challenge