β-expansion in QCD and generalization of BLM optimization procedure [Based on Phys.Rev. D 91, 014007 (2015)]

A. L. Kataev and S. V. Mikhailov

July 26, 2015

Outline

Objects:

renormalization group (RG) invariant, single-scale $\boldsymbol{q}^{\mathbf{2}}$ quantities, e.g., Adler D-function, DIS sum rules, ...

Goal: RG optimization of PT (truncated) series with the "best" $\boldsymbol{\mu}^{\mathbf{2}}$

$$
\boldsymbol{D}\left(q^{2} / \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right)=d_{0}+\sum_{n=1}^{N} \alpha_{s}^{n}\left(\mu^{2}\right) d_{n}\left(q^{2} / \mu^{2}\right)
$$

Known example - BLM approach at NLO, [Brodsky\&Lepage\&Mackenzie(1983)] "...One, therefore, has to address the question of what is the "best" choice for μ^{2} within a given scheme, usually $\overline{\mathrm{MS}}$. There is no definite answer to this question - higher-order corrections do not "fix" the scale, rather they render the theoretical predictions less sensitive to its variation."
(I. Hinchliffe, PDG booklet 2002)

Plan of Presentation

1. β structure of perturbative expansion for RGI quantities
2. Introduction of Adler \boldsymbol{D}-function and $S_{B j p}^{N S}$ as the examples
3. Expansion: from series $\left\{d_{n}\right\}$ to matrixes $\left\{D_{n 1}\right\}$
4. How do we identify the β-terms $D_{n l}$?
5. Explicit results in N^{2} LO: Adler $\boldsymbol{D}^{N S}$-function, Bjorken sum rules $\boldsymbol{S}_{B j p}^{N S}$
6. The role of generalized Crewther relation
7. Discussion of another $\boldsymbol{S}_{B j p}^{N S}$ structure
8. What is "Principe of maximum conformality", PMC ?
9. What is the optimization of PT series? A few partial results.
10. Conclusion

1.1 Adler \boldsymbol{D}-function and Bjorken sum rule $\boldsymbol{S}_{B j \boldsymbol{p}}^{N S}$ in $\overline{\mathrm{MS}}$ scheme

Studies of different ways of resummation and fixation of scale-scheme uncertainties of HO QCD PT predictions \oplus understanding of basic features and symmetries beyond these representations are important theoretically and phenomenologically.

$$
\begin{gather*}
D^{\mathrm{EM}}\left(Q^{2} / \mu^{2}, a_{s}\left(\mu^{2}\right)\right)=\left(\sum_{i} q_{i}^{2}\right) d_{R} D^{\mathrm{NS}}\left(Q^{2} / \mu^{2}, a_{s}\left(\mu^{2}\right)\right)+\left(\sum_{i} q_{i}\right)^{2} d_{R} D^{\mathrm{S}}\left(Q^{2} / \mu^{2}, a_{s}\left(\mu^{2}\right)\right) \\
R_{e^{+} e^{-}}(s) \equiv R\left(s, \mu^{2}=s\right)=\left.\frac{1}{2 \pi i} \int_{-s-i \epsilon}^{-s+i \epsilon} \frac{D^{\mathrm{EM}}\left(\sigma / \mu^{2} ; a_{s}\left(\mu^{2}\right)\right)}{\sigma} d \sigma\right|_{\mu^{2}=s} \\
D^{\mathrm{NS}}\left(Q^{2} / \mu^{2}, a_{s}\left(\mu^{2}\right)\right) \xrightarrow{\mu^{2}=Q^{2}} D^{\mathrm{NS}}\left(a_{s}\left(Q^{2}\right)\right)=1+\sum_{l \geq 1} d_{l}^{\mathrm{NS}} a_{s}^{l}\left(Q^{2}\right) \\
S_{B j p}\left(Q^{2}\right)=\int_{0}^{1}\left[g_{1}^{l p}\left(x, Q^{2}\right)-g_{1}^{l n}\left(x, Q^{2}\right)\right] d x=\frac{g_{A}}{6} C_{B j p}\left(Q^{2} / \mu^{2}, a_{s}\left(\mu^{2}\right)\right) \\
C_{B j p}\left(a_{s}\right)=C_{B j p}^{\mathrm{NS}}\left(a_{s}\right)+\left(\sum_{i} q_{i}\right) C_{B j p}^{\mathrm{S}}\left(a_{s}\right)[\operatorname{Larin}(2013), \text { Baikov\&Chetyrkin\&Kuhn(2015)}) \\
C_{B j p}^{\mathrm{NS}}\left(Q^{2} / \mu^{2}, a_{s}\left(\mu^{2}\right)\right) \xrightarrow{\mu^{2}=Q^{2}} 1+\sum_{l \geq 1} c_{l}^{\mathrm{NS}} a_{s}^{l}\left(Q^{2}\right) \tag{2}
\end{gather*}
$$

Coefficients $\boldsymbol{c}_{I}^{\text {NS }}, \boldsymbol{d}_{l}^{\text {NS }}$ are combinations of Casimirs in $\overline{\mathrm{MS}}$ scheme.
1.2 From series $\left\{d_{n}\right\}$ to matrixes $\left\{D_{n \prime}\right\}$
Instead of Scalar Representation

$$
\begin{equation*}
D^{N S}-1=\sum_{n \geq 1} a_{s}^{n}\left(Q^{2}\right) d_{n}=\left(\overline{a_{s}} \bar{d}\right) \tag{3}
\end{equation*}
$$

we use Matrix Representation to fix the β-structure

$$
\begin{equation*}
D^{N S}-1=\sum_{n \geq 1} \sum_{l} a_{s}^{n}\left(Q^{2}\right) D_{n l} B_{l}=\left(\overline{a_{s}} D \bar{d}\right) \tag{4}
\end{equation*}
$$

$B_{\boldsymbol{l}}$-products of β-function coefficients, $\boldsymbol{d}_{\boldsymbol{n}}=\boldsymbol{D}_{\boldsymbol{n} \boldsymbol{l}} \boldsymbol{B}_{\boldsymbol{l}}$, elements $\boldsymbol{D}_{\boldsymbol{n} \boldsymbol{l}}$ do not depend on the numbers of flavours $\boldsymbol{n}_{\boldsymbol{f}}$, they have the form
$d_{1}=d_{1}[0]=\frac{3}{4} C_{F}$,
$\underline{d_{2}}=\underline{\beta_{0} d_{2}[1]+\boldsymbol{d}_{2}[\mathbf{0}]}$, the Basis of BLM procedure
$d_{3}=\beta_{0}^{2} d_{3}[2]+\beta_{1} d_{3}[0,1]+\beta_{0} d_{3}[1]+\boldsymbol{d}_{3}[\mathbf{0}]$,
$d_{4}=\beta_{0}^{3} d_{4}[3]+\beta_{1} \beta_{0} d_{4}[1,1]+\beta_{2} d_{4}[0,0,1]+\beta_{0}^{2} d_{4}[2]+\beta_{1} d_{4}[0,1]+\beta_{0} d_{4}[1]+\boldsymbol{d}_{4}[\mathbf{0}$
β-expansions has been suggested in [Mikhailov, Quarks2004, JHEP(2007)]; elaborated further in [Kataev\&Mikhailov, TMP(2012), PRD(2015)]; studied and used in [Brodsky\&Wu et al (2012-2015)] Such expansion should to exist for any RGI quantity, it fixes the β-structure of RGI and provides New dynamical information, terms $\boldsymbol{d}_{\boldsymbol{n}}[\mathbf{0}]$ survives at conformal symmetry limit $\boldsymbol{\beta}_{\boldsymbol{i}} \rightarrow 0$.
1.3 How do we identify the $\boldsymbol{\beta}$-terms $\boldsymbol{d}_{\boldsymbol{n}}[I]$?

For first glance Casimirs and $\boldsymbol{n}_{\boldsymbol{f}}$ dependence of $\boldsymbol{d}_{\boldsymbol{n}}$ do not enough to uniquely identify the $\boldsymbol{\beta}$-terms. This is a Separate and Nontrivial task for order $n \geq 3$. For NNLO an additional degrees of freedom can be used, e.g., MSSM gluino

$$
d_{3}=\beta_{0}^{2} d_{3}[2]+\beta_{1} d_{3}[0,1]+\beta_{0} d_{3}[1]+\boldsymbol{d}_{3}[\mathbf{0}]
$$

to disentangle β_{0} and β_{1}, we used the number $\boldsymbol{n}_{\tilde{g}}$ of MSSM gluino, together with the number of the flavours $\boldsymbol{n}_{\boldsymbol{f}}$ of quark, $\beta_{0} \rightarrow \beta_{0}\left(\boldsymbol{n}_{\boldsymbol{f}}, \boldsymbol{n}_{\tilde{g}}\right), \beta_{1} \rightarrow \beta_{1}\left(\boldsymbol{n}_{\boldsymbol{f}}, \boldsymbol{n}_{\tilde{g}}\right)$

$$
\begin{aligned}
d_{1} & =3 \mathrm{C}_{\mathrm{F}} ; \quad d_{2}[1]=\frac{11}{2}-4 \zeta_{3} ; \quad d_{2}[0]=\frac{\mathrm{C}_{\mathrm{A}}}{3}-\frac{\mathrm{C}_{\mathrm{F}}}{2}=\frac{1}{3} ; \\
d_{3}[2] & =\frac{302}{9}-\frac{76}{3} \zeta_{3} \approx 3.10345 ; \quad d_{3}[0,1]=\frac{101}{12}-8 \zeta_{3} \approx-1.19979 ; \\
d_{3}[1] & =\mathrm{C}_{\mathrm{A}}\left(-\frac{3}{4}+\frac{80}{3} \zeta_{3}-\frac{40}{3} \zeta_{5}\right)-\mathrm{C}_{\mathrm{F}}\left(18+52 \zeta_{3}-80 \zeta_{5}\right) \approx 55.7005 ; \\
\boldsymbol{d}_{3}[0] & =\left(\frac{523}{36}-72 \zeta_{3}\right) \mathrm{C}_{\mathrm{A}}^{2}+\frac{71}{3} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}}-\frac{23}{2} \mathrm{C}_{\mathrm{F}}^{2} \approx-573.9607,
\end{aligned}
$$

That was obtained in [Mikhailov(2007)] using QCD $+\boldsymbol{n}_{\tilde{g}}$ multiplet of massless gluino, contributing to $d_{3}\left(\boldsymbol{n}_{\boldsymbol{f}}, \boldsymbol{n}_{\tilde{g}}\right)$ from the result of [Chetyrkin(1997)], see also [Brodsky at el(2015)].

2.1 Explicit results in $\mathrm{N}^{2} \mathrm{LO}$: The role of Crewther relation

The β-expansion for $C_{B j p}^{N S}$ was obtained (in $\overline{\mathrm{MS}}$) from the generalized Crewther relation (CR) for $D^{N S}$ and $C_{B j p}^{N S}[K \& M$ QFTHEP2010, TMP(2012)] that provides additional constraint

Crewther relation: $D^{N S} \cdot C_{B j p}^{N S}=\mathbb{1}+\sum_{n \geq 1}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} P_{n}\left(a_{s}\right)$

$$
\begin{aligned}
C_{B j p}^{N S} & =1+\sum_{n \geq 1} \sum_{l} a_{s}^{n}\left(Q^{2}\right) C_{n l} B_{l} \\
D^{N S} & =1+\sum_{n \geq 1} \sum_{l} a_{s}^{n}\left(Q^{2}\right) D_{n l} B_{l}
\end{aligned}
$$

The "purely conformal" CR with $\mathbb{1}$ in (5) relates $\boldsymbol{c}_{\boldsymbol{n}}[\mathbf{0}]$ to $\boldsymbol{d}_{\boldsymbol{n}}[\mathbf{0}]$

$$
\begin{aligned}
c_{n}[0]+d_{n}[0] & =\sum_{l=1}^{n-1} d_{l}[0] c_{n-l}[0] \\
\text { e.g., } c_{3}[0] & =-d_{3}[0]+2 d_{1} d_{2}[0]-\left(d_{1}\right)^{3},
\end{aligned}
$$

While the "breaking conformality" β terms generate the relations for other elements, e.g., $c_{3}[0,1]=d_{3}[0,1]-d_{2}[1]+c_{2}[1]$
2.1 Explicit results in $\mathrm{N}^{2} \mathrm{LO}$: Bjorken sum rules $S_{B j p}^{N S}$
from the β-expansion for $D^{\text {NS }}$ with the help of $\overline{\mathrm{MS}}$-generalized Crewther relation we fix the β-expansion of $C_{B j p}^{N S}$ [Kataev\&Mikhailov(2010-2012)]
c_{3} elements Crewther relation

$\boldsymbol{D} \rightarrow \boldsymbol{C}$	$\mathbb{1}$	$\sim \beta$
all $\boldsymbol{c}_{3} \leftarrow$ elements	$\boldsymbol{c}_{3}[\mathbf{0}]$	
all $c_{3} \leftarrow$ elements		$c_{3}[0,1]$

New prediction: we obtain
$C_{B j p}^{N S}$ expression in $\mathrm{QCD}+n_{\tilde{g}}$,

$$
\beta_{i} \rightarrow \beta_{i}\left(\boldsymbol{n}_{\boldsymbol{f}}, \boldsymbol{n}_{\tilde{g}}\right)
$$

$$
\begin{aligned}
c_{3} & =\beta_{0}^{2} c_{3}[2]+\beta_{1} c_{3}[0,1]+\beta_{0} c_{3}[1]+\boldsymbol{c}_{3}[0] \\
c_{1}^{\mathrm{NS}} & =-3 \mathrm{C}_{\mathrm{F}} ; c_{2}[1]=2 ; c_{2}[0]=\left(\frac{\mathrm{C}_{\mathrm{A}}}{3}-\frac{7}{2} \mathrm{C}_{\mathrm{F}}\right) ; \\
c_{3}[2] & =\frac{115}{18} ; c_{3}[0,1]=\left(\frac{59}{12}-4 \zeta_{3}\right) ; \\
c_{3}[1] & =-\left(\frac{166}{9}-\frac{16}{3} \zeta_{3}\right) \mathrm{C}_{\mathrm{F}}-\left(\frac{215}{36}-32 \zeta_{3}+\frac{40}{3} \zeta_{5}\right) \mathrm{C}_{\mathrm{A}} ; \\
c_{3}[0] & =\left(\frac{523}{36}-72 \zeta_{3}\right) \mathrm{C}_{\mathrm{A}}^{2}+\frac{65}{3} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{A}}+\frac{\mathrm{C}_{\mathrm{F}}^{2}}{2} \approx-560.627 .
\end{aligned}
$$

These results can be checked by direct analytical calculations in the QCD+ $n_{\tilde{g}}$ multiplets of light gluinos in the $\overline{\mathrm{MS}}$-scheme.
2.2 Discussion of $\boldsymbol{S}_{B j p}^{N S}$ structure from [Brodsky et al]
$c_{1}=c_{1}[0]=-\frac{3}{4} C_{F} \quad, \quad c_{2}=\beta_{0}^{2} c_{2}[1]+c_{2}[0]$
$c_{3}=\beta_{0}^{3} c_{3}[2]+\beta_{1} c_{3}[0,1]+\beta_{0} c_{3}[1]+c_{3}[0]$
$c_{4}=\beta_{0}^{3} c_{4}[3]+\beta_{1} \beta_{0} c_{4}[1,1]+\beta_{2} c_{4}[0,0,1]+\beta_{0}^{2} c_{4}[2]+\beta_{1} c_{4}[0,1]+\beta_{0} c_{4}[1]+c_{4}[0]$
Note that the terms in boxes can not be eliminated.
Without them in [K\&M(2010-2012)] results the powers of β-function will be spoiled. Indeed the polynomial $P_{n}\left(a_{s}\right)$ at the powers of β-function contain these terms and they can not be neglected in the process of constructing Principle of Maximal Conformality by [Brodsky et al]

$$
\begin{gathered}
D^{N S} C_{B j p}^{N S}=1+\sum_{n \geq 1}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} P_{n}\left(a_{s}\right) \\
P_{1}\left(a_{s}\right)=-a_{s}\left(c_{2}[1]+d_{2}[1]\right)-a_{s}^{2}\left(c_{3}[1]+d_{3}[1]+d_{1}\left(c_{2}[1]-d_{2}[1]\right)\right)-a_{s}^{3} \delta_{1} \\
\delta_{1}=c_{4}[1]+d_{4}[1]+d_{1}\left(c_{3}[1]-d_{3}[1]\right)+d_{2}[0] c_{2}[1]+d_{2}[1] c_{2}[0] \\
P_{2}\left(a_{s}\right)=a_{s}\left(c_{3}[2]+d_{3}[2]+a_{s}\left(c_{4}[2]+d_{4}[2]-d_{1}\left(c_{3}[2]-d_{3}[2]\right)\right)\right)
\end{gathered}
$$

If we neglect them the results of β expansion will not agree with the values of the factorized terms, which follow from the exact analytic calculations in the MS-scheme.
3. What is "Principe of maximum conformality", PMC ?

PMC by [Brodsky et al(2011-2015)] in our realization: we consider first β-expansion for $D^{N S}\left(a_{s}\left(t=\ln \left(Q^{2} / \Lambda^{2}\right)\right)\right)$ and find $a_{s}\left(t_{1}, t\right)$ to cancel a part of β-expansion. In each new order of PT we define the new scale Q_{i}^{2}, absorbing the β-function coefficients into the scale(s). Finally we have the sequence of shifts $\left\{\boldsymbol{\Delta}_{\mathbf{0}}, \boldsymbol{\Delta}_{\mathbf{1}}, \ldots\right\}$ from t to $t_{1},\left(a_{s}(t), t\right) \rightarrow\left(a_{s}\left(t_{1}\right), t_{1}\right)$. The general scheme to fix $\left(a_{1}, t_{1}\right)$ looks like:

$$
\begin{align*}
\ln \left(Q^{2} / \Lambda^{2}\right)-\ln \left(Q_{1}^{2} / \Lambda^{2}\right) \equiv & t-t_{1}=\Delta \\
& \quad \text { Expanding } \Delta \text { in } a_{1}: \\
\Delta & =\Delta_{0}+a_{1} \beta_{0} \cdot \Delta_{1}+\left(a_{1} \beta_{0}\right)^{2} \cdot \Delta_{2}+\ldots, \tag{6}\\
\bar{a}(t)=\bar{a}\left(\Delta, a_{1}\right)= & a_{1}-\beta\left(a_{1}\right) \Delta+\beta^{\prime}\left(a_{1}\right) \beta\left(a_{1}\right) \frac{\Delta^{2}}{2}+\ldots
\end{align*}
$$

At first time an expansion of Δ in a_{s} series was done [Grunberg\&Kataev(1992)]

$$
\begin{array}{lll}
\bar{a}^{1} d_{1} \rightarrow & \bar{a}_{1}^{1} \cdot & 1 ; \\
\bar{a}^{2} d_{2} \rightarrow & \bar{a}_{1}^{2} \cdot & {\left[d_{2}-\beta_{0} \boldsymbol{\Delta}_{\mathbf{0}}\right] ;} \\
\bar{a}^{3} d_{3} \rightarrow & \bar{a}_{1}^{3} . & {\left[d_{3}-2 \beta_{0}^{2} \boldsymbol{\Delta}_{\mathbf{0}} \cdot d_{2}-\beta_{1} \boldsymbol{\Delta}_{\mathbf{0}}+\left(\beta_{0} \boldsymbol{\Delta}_{\mathbf{0}}\right)^{2}-\beta_{0}^{2} \boldsymbol{\Delta}_{\mathbf{1}}\right] ;} \\
\bar{a}^{4} d_{4} \rightarrow & \bar{a}_{1}^{4} \cdot & {\left[d_{4}-3 \beta_{0}^{3} \boldsymbol{\Delta}_{\mathbf{0}} \cdot d_{3}+\left(3 \beta_{0}^{3} \boldsymbol{\Delta}_{\mathbf{0}}^{2}-2 \beta_{1} \beta_{0} \boldsymbol{\Delta}_{\mathbf{0}}\right) d_{\mathbf{2}}\right.} \\
& & \left.-\beta_{2} \boldsymbol{\Delta}_{\mathbf{0}}+\frac{5}{2} \beta_{1} \beta_{0} \boldsymbol{\Delta}_{0}^{2}-\left(\beta_{0} \boldsymbol{\Delta}_{\mathbf{0}}\right)^{3}+\ldots-\beta_{0}^{3} \boldsymbol{\Delta}_{\mathbf{2}}\right]
\end{array}
$$

That allows to get expansion in terms of $\boldsymbol{d}_{\boldsymbol{n}}[\mathbf{0}]$
3. What is "Principe of maximum conformality", PMC ?

The final PT series contains only $\boldsymbol{d}_{k}[\mathbf{0}]$ terms

$$
\begin{aligned}
N^{2} L: & D^{N S}\left(t_{1}\right)=1+d_{1}[0] a_{s}\left(t_{1}\right)+d_{2}[0] a_{s}^{2}\left(t_{1}\right), \text { BLM result } \\
N^{3} L: & D^{N S}\left(t_{2}\right)=1+d_{1}[0] a_{s}\left(t_{2}\right)+d_{2}[0] a_{s}^{2}\left(t_{2}\right)+d_{3}[0] a_{s}^{3}\left(t_{2}\right), \\
& \ldots \\
& \ldots, \\
N^{n} L: & D^{N S}\left(t_{2}\right)=1+d_{1}[0] a_{s}\left(t_{n-1}\right)+d_{2}[0] a_{s}^{2}\left(t_{n-1}\right)+\ldots+d_{n}[0] a_{s}^{n}\left(t_{n-1}\right)
\end{aligned}
$$

Now we are able to fix all scales and coefficients in these approximation of PT for $D^{N S}\left(a_{s}\right)$ and $C^{N S}\left(a_{s}\right)$ at the $O\left(a_{s}^{3}\right)$ - approximation. These coef. in opinion of [Brodsky et al.] respect conformal symmetry, this is the PMC. In higher-order level we have the expansion at the single scale $\boldsymbol{t}_{\mathbf{3}}$

$$
N^{4} L: D^{N S}\left(t_{3}\right)=1+d_{1}[0] \cdot a_{s}\left(t_{3}\right)+d_{2}[0] \cdot a_{s}^{2}\left(t_{3}\right)+d_{3}[0] \cdot a_{s}^{3}\left(t_{3}\right)+d_{4}[0] \cdot a_{s}^{4}\left(t_{3}\right)
$$

But the convergence of such series is not improved, by virtue of the alternating β-expansion of d_{n}.
In reality the conformal symmetry exhibits itself here by the Crewther Relation for $D^{N S}\left(a_{s}\right)$ and $C^{N S}\left(a_{s}\right)$.
In the works of [Brodsky et al.] the results have different scales Q_{i}^{2}
in different orders,

$$
D^{N S}\left(Q_{i}\right)=1+d_{1}[0] \cdot a_{s}\left(\tilde{Q}_{1}^{2}\right)+\tilde{d}_{2}[0] \cdot a_{s}^{2}\left(\tilde{Q}_{2}^{2}\right)+\tilde{d}_{3}[0] \cdot a_{s}^{3}\left(\tilde{Q}_{3}^{2}\right)+\tilde{d}_{4}[0] \cdot a_{s}^{4}\left(\tilde{Q}_{4}^{2}\right)
$$

4. What is the optimization of PT series? Optimization for $R^{N S}$-ratio

One should not remove and absorb all the β-terms for the optimization, but leave a part of them for complete cancelation with the $d_{n}[0]$-term.
There are different ways to "optimize" perturbation series, take fist BLM:

$$
\text { Example : } R^{\mathrm{NS}}=1+3 C_{\mathrm{F}}\{\underbrace{a_{s}^{\prime \prime}+\frac{1}{3} \cdot\left(a_{s}^{\prime \prime}\right)^{2}}_{\text {BLM }--}+0 \cdot\left(a_{s}^{\prime \prime}\right)^{3}+r_{4}^{\prime \prime} \cdot\left(a_{s}^{\prime \prime}\right)^{4}+\ldots\}
$$

$$
\begin{aligned}
a_{s}^{\prime \prime} & =a_{s}\left(s \cdot e^{-\Delta\left(Q^{2}\right)}\right) \\
-\Delta & =-0.692+3.7 \beta_{0} a_{s}^{\prime}(s) \\
a_{s}^{\prime \prime} & =a_{s}\left(s \cdot \frac{1}{2} e^{3.7 \beta_{0} a_{s}^{\prime}(s)}\right) \\
r_{4}^{\prime \prime} & \approx-4740.5 \text { at BLM } r_{4}^{\prime} \approx-8559.9
\end{aligned}
$$

- The convergence become better,
- The domain of applicability become wider.
4.4. What is the optimization of PT series? Optimization for $C^{\text {NS }}$

One should not remove and absorb all the β-terms for the optimization, but leave a part of them for complete cancellation with the $d_{n}[0]$-term. There are different ways to "optimize" perturbation series, at 2nd step:

$$
\text { Example: } C_{\mathrm{NS}}^{\mathrm{Bjp}}\left(Q^{2}\right)=1-3 C_{\mathrm{F}}\left\{a_{s}^{\prime \prime}+0 \cdot\left(a_{s}^{\prime \prime}\right)^{2}+0 \cdot\left(a_{s}^{\prime \prime}\right)^{3}+c_{4}^{\prime \prime} \cdot\left(a_{s}^{\prime \prime}\right)^{4}+\ldots\right\}
$$

$$
\begin{aligned}
& a_{s}^{\prime \prime}=a_{s}\left(Q^{2} \cdot e^{-\Delta\left(Q^{2}\right)}\right) \\
& -\Delta=-1.56+0.396 \beta_{0} a_{s}^{\prime}(s) \\
& c_{4}^{\prime \prime} \approx 4184.6 \text { at BLM } c_{4}^{\prime} \approx 6361
\end{aligned}
$$

- The convergence become better,
- The domain of applicability become wider.

1. The β-expansion for RGI quantities exist and is useful in particular for perturbation series optimization.
2. The "optimal series" are not reduced to the series that followed to "Principe of maximum conformality" [Brodsky et al.].
3. K. Chetyrkin has confirmed by the direct calculation our prediction for $\boldsymbol{C}_{\mathrm{NS}}^{\mathrm{Bjp}}$ with gluino at $O\left(\alpha_{s}^{3}\right)$.

Many Thanks to Kostja from us!
4. A.L.K. special point of view on the uniqueness of β-expansion [Broadhurst\&Kataev\&Maxwell]

