Towards four-loop gauge coupling beta-functions in the SM

Andrey Pikelner

in collaboration with A.Bednyakov

BLTP JINR
\section*{CALC-2015}
July 23, 2015

SM RG functions and threshold corrections

- Q: What we need if we interested in SM behaviour at $Q^{2} \sim M_{\mathrm{PI}}$?
= A: We need two main ingridients:

1.Beta-functions

- Evolution of all SM couplings
: Calculated in $\overline{M S}$ scheme
*. Just constants mass and momentum independent

2.Threshold corrections

:- Initial values for evolution
: Connect $\overline{M S}$ running couplings with parameters extractable from experiment

$$
\begin{array}{ccc}
\frac{\text { PDG 20XX }}{M_{b}, M_{W}, M_{Z}}, \rightarrow & g_{i}\left(\mu_{0}\right), y_{i}\left(\mu_{0}\right), \lambda\left(\mu_{0}\right) \rightarrow & \text { Evolve from } \mu_{0} \\
M_{H}, M_{t}, G_{F} & \text { in } \overline{M S} \text { scheme } & \text { to scale } \mu
\end{array}
$$

SM vacuum stability analysis at NNLO

" Three loop beta-functions for gauge Yukawa and self-coupling
[Mihaila,Salomon,Steinhauser'12;Bednyakov,AP,Velizhanin'12,13;Chetyrkin,Zoller'13]
" Two loop full $\mathcal{O}\left(\alpha^{2}\right)$ threshold corrections
[Buttazzo et al.'13;Kniehl,AP,Veretin'15]

RGE from propagator type integrals

-. Three-loop experience
:" Massles propagators: gauge couplings, field renormalization constants using FORM based MINCER package
:" Three-loop massive boubles: Yukawa and Higgs self-coupling
using FORM based MATAD package

- Four-loop experience
\% QCD beta function
massive vacuum integrals available, possible to calculate all types of renormalization constants
:- Massles propagators. Difficult to prepare reduction. Easy to formulate the problem

Independent tool for two-point Green functions renormalization constants calculation

Setup

:- Model file tested at lower loop calculations

- DIANA/QGRAF
[Nogueira'93;Fleischer,Tentyukov'99]
Diagram generation
\#- Prepared set of mapings to 3 auxiliary topos
each topo with 11 denominators and 3 irreducible numerators
.- Reduction
: LiteRed
IBP rules preparation
:- FIRE5, C++ version Integral reduction
:- Master integrals
4-loop propagators

4 loop QCD β-function and renormalization constants

" IRR with auxiliary mass
fully massive four-loop tadpoles, possible to calculate all renormalization constants
From $Z_{g}, Z_{c}, Z_{c c g}$

$$
Z_{a_{g}}=\frac{Z_{c c g}^{2}}{Z_{c}^{2} Z_{g}}
$$

= From $Z_{g}, Z_{q}, Z_{q q g}$

$$
Z_{a_{g}}=\frac{Z_{q q g}^{2}}{Z_{q}^{2} Z_{g}}
$$

- Using 3-loop massles integrals

F From $Z_{c}, Z_{c c g}$ and already known $\beta_{a_{g}}$
Impossible to calculate Z_{g}, but independent calculation of other RCs

$$
Z_{g}=\frac{Z_{c c g}^{2}}{Z_{c}^{2} Z_{a_{g}}}
$$

Renormalization constants in background field gauge

2. Split gauge fields $V=\tilde{V}+\hat{V}$ in
:- quantum $\tilde{V}=(\tilde{G}, \tilde{W}, \tilde{B}, \ldots)$ and
\% background $\hat{V}=(\hat{G}, \hat{W}, \hat{B}, \ldots)$

- Background felds do not propagate
- Modified Feynman rules needed
\# QED like connection between renormalization constants

$$
Z_{a_{g_{i}}}=1 / Z_{\hat{V}_{i}}, \quad Z_{\xi_{i}}=Z_{\tilde{V}_{i}}
$$

" Only need to calculate two-point functions
= Multiplicative renormalization using $a_{\text {bare }}=Z_{a} a_{\text {ren }}$

$$
\Gamma_{\text {ren }}^{(l)}=Z_{\Gamma}^{(l)}\left[1+\Gamma_{\text {bare }}^{(1)}\left(a_{\text {bare }}\right)+\Gamma_{\text {bare }}^{(2)}\left(a_{\text {bare }}\right)+\cdots+\Gamma_{\text {bare }}^{(l)}\left(a_{\text {bare }}\right)\right]
$$

From QCD to SM gauge beta-functions

:- Starting point: comparision with QCD beta function
Calculation from $Z_{\hat{G}}$, coincide with known result
\# In SM more complicated set of feynman rules

- Try more complicated model: QCD with additional fermions in adjoint representation (gluino)

Result available from independent calculation
". Find renormalisation constants in SM with vanishing EW couplings for parameters:

$$
a_{i}=\left(\frac{g_{s}^{2}}{16 \pi^{2}}, \frac{y_{t}^{2}}{16 \pi^{2}}, \frac{\lambda}{16 \pi^{2}}, \xi_{G}\right)
$$

From QCD to SM gauge beta-functions

:- Starting point: comparision with QCD beta function
Calculation from $Z_{\hat{G}}$, coincide with known result
\# In SM more complicated set of feynman rules

- Try more complicated model: QCD with additional fermions in adjoint representation (gluino)

NEXT SLIDE
Result available from independent calculation
.- Find renormalisation constants in SM with vanishing EW couplings for parameters:

$$
a_{i}=\left(\frac{g_{s}^{2}}{16 \pi^{2}}, \frac{y_{t}^{2}}{16 \pi^{2}}, \frac{\lambda}{16 \pi^{2}}, \xi_{G}\right)
$$

QCD with fermions in adjoint representation

\%. At diagram generation level simply replace, where $\left(F^{a}\right)_{b c}=f^{a b c}$

- QCD with adjoint fermion has only 12 independent color structures in $g \rightarrow g$ 4-loop diagrams: 5 for $n_{f}, 5$ for n_{f}^{2} and 2 for n_{f}^{3}
:- each keeping track of QCD color structures $\left(n_{g}=0\right)$, except one $\Rightarrow \mathbf{n}_{\mathbf{f}}: C_{F}^{3} T_{F}, C_{A} C_{F}^{2} T_{F}, C_{A}^{2} C_{F} T_{F}, C_{A}^{3} T_{F}, d_{F}^{a b c d} d_{A}^{a b c d}$
: $\mathbf{n}_{\mathrm{f}}^{2}: C_{A}^{2} T_{F}^{2}, C_{A} C_{F} T_{F}^{2}, \mathrm{C}_{\mathrm{F}}^{2} \mathrm{~T}_{\mathrm{F}}^{2}, d_{F}^{a b c d} d_{F}^{a b c d}$
$\Rightarrow \mathbf{n}_{\mathrm{f}}^{3}: C_{A} T_{F}^{3}, C_{F} T_{F}^{3}$
"- Only $\underline{5}$ color structures at three loops

Why reduced model instead of full SM?

:- Ten times less diagrams to calculate for $\hat{g} \rightarrow \hat{g}$

$\mathrm{SM}, g_{1}=g_{2}=0$	47531
Full SM	438211

F- No problems with γ_{5} in $d \neq 4$
"- Model for general field theory with gauge,Yukawa and self-interaction

Dealing with γ_{5}

.- Only single type of diagram with its nonplanar version contribute
Only diagrams with two traces containig γ_{5} contracted give nontrivial contribution

. All of them have only single pole $1 / \epsilon$
higher poles are absent
:- Divergent part do not affected by relation

$$
\operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5}\right)=-4 i \epsilon_{\mu \nu \rho \sigma}+\mathcal{O}(\epsilon)
$$

" safe to use $D=4$ relation

$$
\epsilon^{\mu \nu \rho \sigma} \epsilon_{\alpha \beta \gamma \delta}=-\mathcal{T}_{[\alpha \beta \gamma \delta]}^{[\mu \nu \rho \sigma]}, \quad \mathcal{T}_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma}=\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu} \delta_{\gamma}^{\rho} \delta_{\delta}^{\sigma}
$$

SM gauge coupling beta-function in $g_{1}=g_{2}=0$ limit

:- Beta function

$$
\beta=\frac{d a_{g}}{d \log \mu^{2}}=h^{2} \beta_{0}+h^{3} \beta_{1}+h^{4} \beta_{2}+h^{5} \beta_{3}
$$

" h counts a_{i} powers

$$
a_{g}=\frac{g^{2}}{16 \pi^{2}}, a_{t}=\frac{y_{t}^{2}}{16 \pi^{2}}, a_{\lambda}=\frac{\lambda}{16 \pi^{2}}
$$

4-loop non pure QCD part

$$
\begin{aligned}
\beta_{3} & =\beta_{3}^{\mathrm{QCD}}+a_{g}^{4} a_{t}\left[T_{F} C_{F}^{2}\left(-\frac{3}{2}+36 \zeta_{3}\right)+T_{F} C_{A} C_{F}\left(-\frac{523}{36}+18 \zeta_{3}\right)-\frac{985}{18} T_{F} C_{A}^{2}\right. \\
& \left.+\frac{322}{9} T_{F}^{2} C_{F} n_{G}+\frac{218}{9} T_{F}^{2} C_{A} n_{G}\right]+a_{g}^{3} a_{t}^{2}\left[T_{F}^{2}\left(\frac{38}{3}-8 \zeta_{3}\right)+T_{F} C_{F}\left(\frac{117}{4}-36 \zeta_{3}\right)+\frac{111}{2} T_{F} C_{A}\right] \\
& +a_{g}^{2} a_{t}^{3} T_{F}\left(-\frac{423}{8}-3 \zeta_{3}\right)-15 a_{g}^{2} a_{t}^{2} a_{\lambda} T_{F}+18 a_{g}^{2} a_{t} a_{\lambda}^{2} T_{F}
\end{aligned}
$$

SM \tilde{a}-function and Weyl consistency conditions

: Motivated by Zamolodchikov c-function in 2d conformal theory
" Construct \tilde{a}-function in 4d SM

- Perturbative relations between different beta-function terms

$$
\frac{\partial^{2} \tilde{a}}{\partial g_{i} \partial g_{j}}=\frac{\partial}{\partial g_{i}}\left(\chi^{j k} \beta_{k}\right)+\mathcal{O}(g)=\frac{\partial}{\partial g_{j}}\left(\chi^{i k} \beta_{k}\right)+\mathcal{O}(g)
$$

\# At lowest order metric χ is diagonal

$$
\chi=\operatorname{diag}\left(\frac{1}{a_{1}^{2}}, \frac{3}{a_{2}^{2}}, \frac{8}{a_{3}^{2}}, \frac{2}{a_{t}}, 4\right)
$$

- At higher orders non-diagonal terms of χ are involved and other additions

Connection between different orders in beta-functions

$$
\begin{aligned}
& \beta_{1}=2 a_{1}^{2}\left\{\cdots+\left(\frac{3}{4}+\frac{n_{G}}{2}\right) a_{2}+\frac{22 n_{G}}{9} a_{3}+\cdots+a_{t}\left[-\frac{17}{12}-\ldots\right]+a_{\lambda}\left(\frac{3}{4} a_{1}+\frac{3}{4} a_{2}-\frac{3}{2} a_{\lambda}\right)\right\} \\
& \beta_{2}=2 a_{2}^{2}\left\{\cdots+\left(\frac{1}{4}+\frac{n_{G}}{6}\right) a_{1}+\cdots+2 n_{G} a_{3} \cdots+a_{t}\left[-\frac{3}{4}-\ldots\right]+a_{\lambda}\left(\frac{1}{4} a_{1}+\frac{3}{4} a_{2}-\frac{3}{2} a_{\lambda}\right)\right\} \\
& \beta_{3}=2 a_{3}^{2}\left\{\cdots+\frac{11 n_{G}}{36} a_{1}+\frac{3 n_{G}}{4} a_{2}+\cdots+a_{t}[-1-\ldots]\right\} \\
& \beta_{t}=2 a_{t}\left\{\frac{9}{4} a_{t}-4 a_{3}-\frac{17}{24} a_{1}-\frac{9}{8} a_{2}+3 a_{\lambda}^{2}-6 a_{t} a_{\lambda}-\ldots\right\} \\
& \beta_{\lambda}=\frac{9}{16} a_{2}^{2}-\frac{9}{2} a_{\lambda} a_{2}+\frac{3}{16} a_{1}^{2}-\frac{3}{2} a_{\lambda} a_{1}+\frac{3}{8} a_{1} a_{2}+12 a_{\lambda}^{2}+6 a_{\lambda} a_{t}-3 a_{t}^{2}
\end{aligned}
$$

F- Three-loop $\beta_{g} \rightarrow$ one-loop β_{λ}
= Two-loop $\beta_{g} \rightarrow$ one-loop β_{y}
Two-loop $\beta_{y} \rightarrow$ one-loop β_{λ}

Application to SM power counting

[Antipin et al.'13] argued that proper expansion is not in loop orders of beta-functions (3-3-3), but in orders of \tilde{a}-function
F. Sample term in $\tilde{a}=\cdots+a_{2} a_{t} a_{\lambda}^{2}+\ldots$ connected with:
$\therefore a_{2} a_{t} a_{\lambda}$, 2-loop term in β_{λ}
$\Rightarrow a_{2} a_{t} a_{\lambda}^{2}, 3$-loop term in β_{t}
$=a_{2}^{2} a_{t} a_{\lambda}^{2}$, 4-loop term in β_{2}
:- With only three-loop beta-functions available we should use only three-loop $\overline{\beta_{g}}$, two-loop β_{y} and one-loop $\beta_{\lambda}(3-2-1)$
\# But now we equiped with β_{g} at four-loops and try (4-3-2) counting

λ running with different orders of PT

Simply think about widely used 3-3-3 running as 4-3-3 or 5-4-3 but with missed higher order terms

Conclusions

". Calculated four-loop QCD beta-function from different set of renormalization constants and coincide with known result
:- Setup tested with new calculation of four-loop QCD beta-function with fermion in adjoint representation and compared with independent prediction

- Calculated four-loop gauge coupling beta-function in SM in $g_{1}=g_{2}=0$ limit
= \tilde{a}-function motivated PT expansion tested with four-loop gauge beta-function

