Towards four-loop gauge coupling beta-functions in the SM

Andrey Pikelner

in collaboration with A.Bednyakov

BLTP JINR

CALC-2015

July 23, 2015

SM RG functions and threshold corrections

- **?** Q: What we need if we interested in SM behaviour at $Q^2 \sim M_{
 m Pl}$?
- A: We need two main ingridients: <u>1.Beta-functions</u>
 - Evolution of all SM couplings
 - Calculated in \overline{MS} scheme
 - Just constants mass and momentum independent

2. Threshold corrections

- Initial values for evolution
- Connect MS running couplings with parameters extractable from experiment

$$\begin{array}{c} \underbrace{\mathsf{PDG} \ 20\mathsf{XX}}_{M_b, M_W, M_Z,} \to g_i(\mu_0), \underbrace{\mathsf{Fixed} \ \mu_0}_{in \ \overline{MS} \ \mathsf{scheme}} \to \underbrace{\mathsf{Evolve from} \ \mu_0}_{\mathsf{to scale} \ \mu} \end{array}$$

SM vacuum stability analysis at NNLO

- Three loop beta-functions for gauge Yukawa and self-coupling [Mihaila,Salomon,Steinhauser'12;Bednyakov,AP,Velizhanin'12,13;Chetyrkin,Zoller'13]
- Two loop full $\mathcal{O}(\alpha^2)$ threshold corrections

[Buttazzo et al.'13;Kniehl,AP,Veretin'15]

RGE from propagator type integrals

Three-loop experience

- Massles propagators: gauge couplings, field renormalization constants using FORM based MINCER package
- Three-loop massive boubles: Yukawa and Higgs self-coupling using FORM based MATAD package

Four-loop experience

QCD beta function

massive vacuum integrals available, possible to calculate all types of renormalization constants

Massles propagators. Difficult to prepare reduction. Easy to formulate the problem

Independent tool for two-point Green functions renormalization constants calculation

Setup

- Model file tested at lower loop calculations
- DIANA/QGRAF

[Nogueira'93;Fleischer,Tentyukov'99]

Diagram generation

Prepared set of mapings to 3 auxiliary topos

each topo with 11 denominators and 3 irreducible numerators

Reduction

Э.	LiteRed	
	IBP rules preparation	[Lee'12]
\mathbf{P}_{i}	FIRE5, C++ version	
	Integral reduction	[Smirnov'14]
\mathbf{P}_{i}	Master integrals	
	4-loop propagators	[Baikov,Chetyrkin'10;Lee,Smirnovs'11]

4 loop QCD β -function and renormalization constants

IRR with auxiliary mass

fully massive four-loop tadpoles, possible to calculate all renormalization constants

From Z_g, Z_c, Z_{ccg}

[Larin, Vermaseren, Ritbergen'97]

$$Z_{a_g} = \frac{Z_{ccg}^2}{Z_c^2 Z_g}$$

From Z_g, Z_q, Z_{qqg}

$$Z_{a_g} = \frac{Z_{qqg}^2}{Z_q^2 Z_g}$$

Using 3-loop massles integrals

[Chetyrkin'04]

[Czakon'04]

From Z_c, Z_{ccg} and already known β_{ag} Impossible to calculate Z_g, but independent calculation of other RCs

$$Z_g = \frac{Z_{ccg}^2}{Z_c^2 Z_{a_g}}$$

Renormalization constants in background field gauge

- Split gauge fields $V = \tilde{V} + \hat{V}$ in
 - quantum $\tilde{V} = (\tilde{G}, \tilde{W}, \tilde{B}, \dots)$ and
 - background $\hat{V} = (\hat{G}, \hat{W}, \hat{B}, \dots)$
- Background felds do not propagate
- Modified Feynman rules needed
- QED like connection between renormalization constants

$$Z_{a_{g_i}} = 1/Z_{\hat{V}_i}, \qquad Z_{\xi_i} = Z_{\tilde{V}_i}$$

- Only need to calculate two-point functions
- Multiplicative renormalization using $a_{\text{bare}} = Z_a a_{\text{ren}}$

$$\Gamma_{\rm ren}^{(l)} = Z_{\Gamma}^{(l)} \left[1 + \Gamma_{\rm bare}^{(1)}(a_{\rm bare}) + \Gamma_{\rm bare}^{(2)}(a_{\rm bare}) + \dots + \Gamma_{\rm bare}^{(l)}(a_{\rm bare}) \right]$$

From QCD to SM gauge beta-functions

- Starting point: comparision with QCD beta function Calculation from Z_G, coincide with known result
- In SM more complicated set of feynman rules
- Try more complicated model: QCD with additional fermions in adjoint representation (gluino)

Result available from independent calculation

Find renormalisation constants in SM with vanishing EW couplings for parameters:

$$a_i = \left(\frac{g_s^2}{16\pi^2}, \frac{y_t^2}{16\pi^2}, \frac{\lambda}{16\pi^2}, \xi_G\right)$$

From QCD to SM gauge beta-functions

- Starting point: comparision with QCD beta function OK Calculation from Z_Ĝ, coincide with known result
- In SM more complicated set of feynman rules
- Try more complicated model: QCD with additional fermions in adjoint representation (gluino) NEXT SLIDE

Result available from independent calculation

Find renormalisation constants in SM with vanishing EW couplings for parameters:

$$a_i = \left(\frac{g_s^2}{16\pi^2}, \frac{y_t^2}{16\pi^2}, \frac{\lambda}{16\pi^2}, \xi_G\right)$$

QCD with fermions in adjoint representation

At diagram generation level simply replace, where $(F^a)_{bc} = f^{abc}$

$$\prod_{j=1}^{m} \prod_{j=1}^{m} n_f \operatorname{tr}[T^{a_1} \dots T^{a_n}] \to \prod_{j=1}^{m} \prod_{j=1}^{m} n_g \operatorname{tr}[F^{a_1} \dots F^{a_n}]$$

- QCD with adjoint fermion has only <u>12</u> independent color structures in g → g 4-loop diagrams: 5 for n_f, 5 for n_f² and 2 for n_f³
- Peach keeping track of QCD color structures($n_g = 0$), except one
 - $\begin{array}{l} \mathbf{n_f}: \ C_F^3 T_F, \ C_A C_F^2 T_F, \ C_A^2 C_F T_F, \ C_A^3 T_F, \ d_F^{abcd} d_A^{abcd} \\ \mathbf{n_f}^2: \ C_A^2 T_F^2, \ C_A C_F T_F^2, \ \mathbf{C_F^2 T_F^2}, \ d_F^{abcd} d_F^{abcd} \\ \mathbf{n_f}^3: \ C_A T_F^3, \ C_F T_F^3 \end{array}$
- Only <u>5</u> color structures at three loops [Clavelli,Coulter,Surguladze'96] 3 for n_f and 2 for n_f^2

Why reduced model instead of full SM?

For times less diagrams to calculate for $\hat{g}
ightarrow \hat{g}$

$SM, g_1 = g_2 = 0$	47531
Full SM	438211

- No problems with γ_5 in $d \neq 4$
- Model for general field theory with gauge, Yukawa and self-interaction

Dealing with γ_5

Only single type of diagram with its nonplanar version contribute

Only diagrams with two traces containig γ_5 contracted give nontrivial contribution

All of them have only single pole $1/\epsilon$

higher poles are absent

Divergent part do not affected by relation

$$\operatorname{tr}(\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5}) = -4i\epsilon_{\mu\nu\rho\sigma} + \mathcal{O}(\epsilon)$$

safe to use D = 4 relation

$$\epsilon^{\mu
u
ho\sigma}\epsilon_{lphaeta\gamma\delta} = -\mathcal{T}^{[\mu
u
ho\sigma]}_{[lphaeta\gamma\delta]}, \qquad \mathcal{T}^{\mu
u
ho\sigma}_{lphaeta\gamma\delta} = \delta^{\mu}_{lpha}\delta^{
u}_{eta}\delta^{
ho}_{eta}\delta^{\sigma}_{\delta}\delta^{\sigma}_{\delta},$$

SM gauge coupling beta-function in $g_1 = g_2 = 0$ limit

4-loop non pure QCD part

$$\begin{split} \beta_3 &= \beta_3^{\text{QCD}} + a_g^4 a_t \left[T_F C_F^2 \left(-\frac{3}{2} + 36\zeta_3 \right) + T_F C_A C_F \left(-\frac{523}{36} + 18\zeta_3 \right) - \frac{985}{18} T_F C_A^2 \right. \\ &+ \frac{322}{9} T_F^2 C_F n_G + \frac{218}{9} T_F^2 C_A n_G \right] + a_g^3 a_t^2 \left[T_F^2 \left(\frac{38}{3} - 8\zeta_3 \right) + T_F C_F \left(\frac{117}{4} - 36\zeta_3 \right) + \frac{111}{2} T_F C_A \right] \\ &+ a_g^2 a_t^3 T_F \left(-\frac{423}{8} - 3\zeta_3 \right) - 15a_g^2 a_t^2 a_\lambda T_F + 18a_g^2 a_t a_\lambda^2 T_F \end{split}$$

SM \tilde{a} -function and Weyl consistency conditions

- Motivated by Zamolodchikov <u>c-function</u> in 2d conformal theory
- Construct *ã*-function in 4d SM [Jack,Osborn'90;Antipin et.al'13]
- Perturbative relations between different beta-function terms

$$\frac{\partial^2 \tilde{a}}{\partial g_i \partial g_j} = \frac{\partial}{\partial g_i} (\chi^{jk} \beta_k) + \mathcal{O}(g) = \frac{\partial}{\partial g_j} (\chi^{ik} \beta_k) + \mathcal{O}(g)$$

At lowest order metric χ is diagonal

$$\chi = \text{diag}\left(\frac{1}{a_1^2}, \frac{3}{a_2^2}, \frac{8}{a_3^2}, \frac{2}{a_t}, 4\right)$$

At higher orders non-diagonal terms of χ are involved and other additions

Connection between different orders in beta-functions

$$\beta_{1} = 2a_{1}^{2} \left\{ \dots + \left(\frac{3}{4} + \frac{n_{G}}{2}\right) a_{2} + \frac{22n_{G}}{9}a_{3} + \dots + a_{t} \left[-\frac{17}{12} - \dots\right] + a_{\lambda} \left(\frac{3}{4}a_{1} + \frac{3}{4}a_{2} - \frac{3}{2}a_{\lambda}\right) \right\}$$

$$\beta_{2} = 2a_{2}^{2} \left\{ \dots + \left(\frac{1}{4} + \frac{n_{G}}{6}\right) a_{1} + \dots + 2n_{G}a_{3} \dots + a_{t} \left[-\frac{3}{4} - \dots\right] + a_{\lambda} \left(\frac{1}{4}a_{1} + \frac{3}{4}a_{2} - \frac{3}{2}a_{\lambda}\right) \right\}$$

$$\beta_{3} = 2a_{3}^{2} \left\{ \dots + \frac{11n_{G}}{36}a_{1} + \frac{3n_{G}}{4}a_{2} + \dots + a_{t} \left[-1 - \dots\right] \right\}$$

$$\beta_{t} = 2a_{t} \left\{ \frac{9}{4}a_{t} - 4a_{3} - \frac{17}{24}a_{1} - \frac{9}{8}a_{2} + 3a_{\lambda}^{2} - 6a_{t}a_{\lambda} - \dots \right\}$$

$$\beta_{\lambda} = \frac{9}{16}a_{2}^{2} - \frac{9}{2}a_{\lambda}a_{2} + \frac{3}{16}a_{1}^{2} - \frac{3}{2}a_{\lambda}a_{1} + \frac{3}{8}a_{1}a_{2} + 12a_{\lambda}^{2} + 6a_{\lambda}a_{t} - 3a_{t}^{2}$$

$$\Rightarrow \text{ Three-loop } \beta_{g} \rightarrow \text{ one-loop } \beta_{\lambda}$$

- Two-loop $\beta_g \rightarrow$ one-loop β_y
- Two-loop $\beta_y \rightarrow$ one-loop β_λ

Application to SM power counting

[Antipin et al.'13] argued that proper expansion is not in loop orders of beta-functions (3-3-3), but in orders of \tilde{a} -function

- Sample term in $\tilde{a} = \cdots + a_2 a_t a_{\lambda}^2 + \ldots$ connected with:
 - $a_2 a_t a_\lambda$, 2-loop term in β_λ
 - $a_2a_ta_\lambda^2$, 3 -loop term in β_t
 - $a_2^2 a_t a_{\lambda}^2$, 4-loop term in β_2
- With only three-loop beta-functions available we should use only three-loop $\overline{\beta_g}$, two-loop β_y and one-loop β_λ (3-2-1)
- But now we equiped with β_g at four-loops and try (4-3-2) counting

λ running with different orders of PT

Simply think about widely used 3-3-3 running as 4-3-3 or 5-4-3 but with missed higher order terms

Conclusions

- Calculated four-loop QCD beta-function from different set of renormalization constants and coincide with known result
- Setup tested with new calculation of four-loop QCD beta-function with fermion in adjoint representation and compared with independent prediction
- Calculated four-loop gauge coupling beta-function in SM in $g_1 = g_2 = 0$ limit
- ã-function motivated PT expansion tested with four-loop gauge beta-function