FIRE5: a C++ implementation of Feynman Integral REduction

FIRE5: a C++ implementation of
Feynman Integral REduction

A.V. Smirnov

Scientific Research Center, MSU

July 24, 2015

FIRE5: a C++ implementation of Feynman Integral REduction

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

The goal of this talk is to present the new version FIRE.
m FIRE - Feynman Integral REduction
FIRE can be downloaded from http://git.sander.su/fire

http://git.sander.su/fire

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Feynman integrals

m Feynman integrals over loop momenta:

d?% ...d%
.F(al,...,an) - //E;—Ea"h
PR =

m Currently one needs to evaluate millions of Feynman
integrals with diffeent indices a; coresponding to a
particular diagram, so evaluating each of them
analytically turns into an unreal task.

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Evaluation of Feynman integrals

Evaluation of Feynman integrals can be divided into two parts:

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Evaluation of Feynman integrals

Evaluation of Feynman integrals can be divided into two parts:

m reduction — representing all required integrals as linear
combinations of so-called master integrals;

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Evaluation of Feynman integrals

Evaluation of Feynman integrals can be divided into two parts:

m reduction — representing all required integrals as linear
combinations of so-called master integrals;

m evaluation of master integrals.

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Evaluation of Feynman integrals

Evaluation of Feynman integrals can be divided into two parts:

m reduction — representing all required integrals as linear
combinations of so-called master integrals — FIRE;

m evaluation of master integrals

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Relation types

Most commonly used relations: IBP relations (Chetyrkin,
Tkachev).

d de O (p 1\
//d R A Gr=om= L

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Relation types

Most commonly used relations: IBP relations (Chetyrkin,
Tkachev).

d g O (1 _
//d b dh Piga g) =0

ZaiF(al+bi,17“‘7an+bi>n):O’

Symmetry relations, e.g.,

F(ala © an) = (_1)d131+...d,,a,, F(aa'(l)>) ao‘(n))>

«0»

«AFr «=>»

v

DA

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Relation types

Symmetry relations, e.g.,

F(al, e a,,) = (—1)d131+“‘d"a"F(aU(1), R

Boundary conditions:

F(ai,as,...,a,) =0 when a;, <0,...

for some subsets of indices ij;

a;

k

<0

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Multiple programs for Feynman integral reduction

AIR
FIRE
Reduze

|
n
n
m LiteRed

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Multiple programs for Feynman integral reduction

m AIR

= FIRE
m Reduze
m LiteRed
n

different private implementations

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Multiple programs for Feynman integral reduction

m AIR

= FIRE

m Reduze

m LiteRed

m different private implementations
m

more public algorithms going to appear?

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Multiple programs for Feynman integral reduction

m AIR

= FIRE

m Reduze

m LiteRed

m different private implementations
m

more public algorithms going to appear? WATER,
EARTH

FIRE5: a C++ implementation of Feynman Integral REduction
L Introduction

Multiple programs for Feynman integral reduction

m AIR

= FIRE

m Reduze

m LiteRed

m different private implementations
m

more public algorithms going to appear? WATER,
EARTH and 5th element

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Versions of FIRE

m FIRE1, FIRE2 — mythical versions that existed only in
private, based mostly on Grdbner bases

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Versions of FIRE

m FIRE1, FIRE2 — mythical versions that existed only in
private, based mostly on Grdbner bases

m FIRE3 — first public version in Wolfram Mathematica

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Versions of FIRE
m FIRE1, FIRE2 — mythical versions that existed only in
private, based mostly on Grdbner bases
m FIRE3 — first public version in Wolfram Mathematica

m FIRE4 — upgraded Mathematica version, master integral
identification (tsort by Alexey Pak), usage of reduction
rules (LiteRed)

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Versions of FIRE
m FIRE1, FIRE2 — mythical versions that existed only in
private, based mostly on Grdbner bases
m FIRE3 — first public version in Wolfram Mathematica

m FIRE4 — upgraded Mathematica version, master integral
identification (tsort by Alexey Pak), usage of reduction
rules (LiteRed)

m FIRE5 — Mathematica and c+-+

FIRE5: a C++ implementation of Feynman Integral REduction

L FIRE

n 1 2 3 4
Mathematica 640 | 1453 | 2061 | 3958

C++, 1 thread, disk mode | 134 | 168 | 255 | 552
C++, 4 threads, disk mode | 76 | 100 | 163 | 323
C++, 1 thread, RAM mode | 107 | 136 | 210 | 473
C++, 4 threads, RAM mode | 49 74 108 | 237

Table : Timings for the on-shell massless double box example, n is

the total power of irreducible numerators

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Installation of FIRE:

m Either download a binary package from
http://git.sander.su/fire/downloads and hope
that it works for your system

http://git.sander.su/fire/downloads

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Installation of FIRE:

m Either download a binary package from
http://git.sander.su/fire/downloads and hope
that it works for your system

m Or download the source with git and build it yourself (this
also gives you access to dev versions of FIRE)

Building from sources requires KyotoCabinet and Snappy
libraries, but they are shipped with FIRE.

http://git.sander.su/fire/downloads

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Installation from sources:

m git clone https://bitbucket.org/feynmanintegrals/fire.git
&& cd fire/FIRES

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Installation from sources:

m git clone https://bitbucket.org/feynmanintegrals/fire.git
&& cd fire/FIRES

m make dep (to build the dependencies)

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Installation from sources:

m git clone https://bitbucket.org/feynmanintegrals/fire.git
&& cd fire/FIRES
m make dep (to build the dependencies)

m make

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Installation from sources:

m git clone https://bitbucket.org/feynmanintegrals/fire.git
&& cd fire/FIRES

m make dep (to build the dependencies)
m make

m To download the latest version: git pull

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Installation from sources:

m git clone https://bitbucket.org/feynmanintegrals/fire.git
&& cd fire/FIRES

m make dep (to build the dependencies)

m make

m To download the latest version: git pull

m Switch to dev version: git checkout dev

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Structure of FIRE

m The Mathematica part FIRE5.m — used as the main
frontend to provide input and to analyze output

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Structure of FIRE

m The Mathematica part FIRE5.m — used as the main
frontend to provide input and to analyze output

m The c++ binary bin/FIRE5 — efficiently performs
reduction without Mathematica

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Structure of FIRE

m The Mathematica part FIRE5.m — used as the main
frontend to provide input and to analyze output

m The c++ binary bin/FIRE5 — efficiently performs
reduction without Mathematica

m extra/ferl64 (extra/ferm64) — the fermat program by
Robert Lewis performing algebraic simplifications

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Structure of FIRE
m The Mathematica part FIRE5.m — used as the main
frontend to provide input and to analyze output

m The c++ binary bin/FIRE5 — efficiently performs
reduction without Mathematica

m extra/ferl64 (extra/ferm64) — the fermat program by
Robert Lewis performing algebraic simplifications

m LiteRed package by Roman Lee — can be used to provide
additional reduction rules or symmetries

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Structure of FIRE

m The Mathematica part FIRE5.m — used as the main
frontend to provide input and to analyze output

m The c++ binary bin/FIRE5 — efficiently performs
reduction without Mathematica

m extra/ferl64 (extra/ferm64) — the fermat program by
Robert Lewis performing algebraic simplifications

m LiteRed package by Roman Lee — can be used to provide
additional reduction rules or symmetries

m bin/KLink — auxilirary binary used to access
Kyotocabinet databases from Mathematica

FIRE5: a C++ implementation of Feynman Integral REduction
L FIrRE

Structure of FIRE

m The Mathematica part FIRE5.m — used as the main
frontend to provide input and to analyze output

m The c++ binary bin/FIRE5 — efficiently performs
reduction without Mathematica

m extra/ferl64 (extra/ferm64) — the fermat program by
Robert Lewis performing algebraic simplifications

m LiteRed package by Roman Lee — can be used to provide
additional reduction rules or symmetries

m bin/KLink — auxilirary binary used to access
Kyotocabinet databases from Mathematica

m bin/FLink — auxilirary binary used to run fermat from
Mathematica

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

0. Loading FIRE in Mathematica

SetDirectory[<path to the folder with FIRE>];
Get ["FIRE5.m"];
or

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

0. Loading FIRE in Mathematica

SetDirectory[<path to the folder with FIRE>];
Get["FIRE5.m"];

or

FIREPath = <path to the folder with FIRE>;
Get [FIREPath<>"FIRE5.m"];

m Internal = {k1, k2};

«Or» «F>» «=>»

<

v

DA

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Creating a start file in Mathematica

{k1, k2%};
{p1, p2, p3};

m Internal

m External

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Creating a start file in Mathematica

{k1, k2};

{p1, p2, p3};

m Propagators = {-k1?, -(k1 + pl + p2)?, -k2?,
-(k2 + p1 + p2)2, -(k1 + p1)?, -(k1 - k2)2,
-(k2 - p3)?, -(k2 + p1)?, -(k1 - p3)2};

m Internal

m External

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Creating a start file in Mathematica

{k1, k2};

{p1, p2, p3};

m Propagators = {-k1?, -(k1 + pl + p2)?, -k2?,
-(k2 + p1 + p2)2, -(k1 + p1)?, -(k1 - k2)2,
-(k2 - p3)?, -(k2 + p1)?, -(k1 - p3)2};

m Replacements = {p1? -> 0, p2? -> 0, p3? -> 0,
pl p2 -> s/2,
pl p3 -> t/2, p2 p3 -> -1/2 (s + t)};

m Internal

m External

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Creating a start file in Mathematica

{k1, k2};

{p1, p2, p3};

m Propagators = {-k1?, -(k1 + pl + p2)?, -k2?,
-(k2 + p1 + p2)2, -(k1 + p1)?, -(k1 - k2)2,
-(k2 - p3)?, -(k2 + p1)?, -(k1 - p3)2};

m Replacements = {p1?> -> 0, p22 -> 0, p3%2 -> 0,
pl p2 -> s/2,
pl p3 -> t/2, p2 p3 -> -1/2 (s + t)};

m PrepareIBP[]; Prepare[AutoDetectRestrictions
-> True]; SaveStart["doublebox"];

m Internal

m External

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Reduction in Mathematica

m LoadStart["doublebox",1]; Burnl[];

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Reduction in Mathematica

m LoadStart["doublebox",1]; Burnl[];
You can load multiple start files a time!

mF[1, {1, 1,1, 1,1, 1,1, -1, -1}]

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Reduction in Mathematica

m LoadStart["doublebox",1]; Burnl[];
You can load multiple start files a time!

mF[1, {12, 1,1, 1, 1, 1, 1, -1, -1}]
or a better way for multiple integrals:

m EvaluateAndSave[{{1, {1, 1, 1, 1, 1, 1, 1,
-1, -1}3,
{1, {1, 1, 1,1, 1,1, 1, 0,
-2}}},"doublebox.tables"]

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

1. Reduction in Mathematica

m LoadStart["doublebox",1]; Burnl[];
You can load multiple start files a time!

mF[1, {1, 1, 1,1, 1, 1, 1, -1, -1}]
or a better way for multiple integrals:

m EvaluateAndSave[{{1, {1, 1, 1, 1, 1, 1, 1,
-1, -1}3,
{1, {1, 1,1, 1, 1, 1, 1, O,
-2}}},"doublebox.tables"]
Later load a new kernel, load the start file and...

m LoadTables["doublebox.tables"];

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

m FIRE automatilly starts the reduction from the top-level
sectors, then lower and lower (already with the knowledge
of what integrals are required at this level). Then it
performs the backward-substitutions;

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

m FIRE automatilly starts the reduction from the top-level
sectors, then lower and lower (already with the knowledge
of what integrals are required at this level). Then it
performs the backward-substitutions;

m The same is true for the c++ FIRE, however it can also
work in parallel with sectors of the same level (the
number of positive indices).

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

2. Finding equivalents between master integrals

During the main reduction phase FIRE cannot find equivalents
between master integrals in different sectors.
MasterIntegrals[]

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

2. Finding equivalents between master integrals

During the main reduction phase FIRE cannot find equivalents
between master integrals in different sectors.
MasterIntegrals[]
{{1, {0, 0, 0, 0, 1, 1, 1, O, O}},

,{1, {0, 0, 1, 1, 1, 1, 1, O,
0}}, , {1, {o, 1,
1, 0, 1, 1, 1, 0, 0}},

, {1, {1, 0,0, 1,1, 1, 1, 0, 0}},
, 11, {1, 1, 0, 0, 1, 1,

i, o, 0}}, {1, {1, 1, 1, 1, 0, O, O, O, O}}, {1,
{1, 1,1, 1, 1, 1, 1, 0, O}}, {1, {1, 1, 1, 1, 1,
1, 1, -1, 0}}}

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

2. Finding equivalents between master integrals

{k1, k2};

{p1, p2, p3};

m Propagators = {-k1%, -(k1 + p1l + p2)?, -k22,
(k2 + pl + p2)?, -(k1 + p1)?, -(kl - k2)2?,
~(k2 - p3)?, -(k2 + p1)2, -(k1 - p3)2};

m Replacements = {p1?> -> 0, p22 -> 0, p3%? -> 0,
pl p2 -> s/2,
pl p3 -> t/2, p2 p3 -> -1/2 (s + t)};

m Internal

m External

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

2. Finding equivalents between master integrals

{k1, k2};

{p1, p2, p3};

m Propagators = {-k1%, -(k1 + p1l + p2)?, -k22,
(k2 + pl + p2)?, -(k1 + p1)?, -(kl - k2)2?,
-(k2 - p3)?, -(k2 + p1)?, -(k1 - p3)?%};

m Replacements = {p1?> -> 0, p22 -> 0, p3%? -> 0,
pl p2 -> s/2,
pl p3 -> t/2, p2 p3 -> -1/2 (s + t)};

m FindRules[MasterIntegrals[]]

m Internal

m External

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

2. Finding equivalents between master integrals

{k1, k2};

{p1, p2, p3};

m Propagators = {-k1%, -(k1 + p1l + p2)?, -k22,
(k2 + pl + p2)?, -(k1 + p1)?, -(kl - k2)2?,
~(k2 - p3)?, -(k2 + p1)?, -(k1 - p3)2};

m Replacements = {p1?> -> 0, p22 -> 0, p3%? -> 0,
pl p2 -> s/2,
pl p3 -> t/2, p2 p3 -> -1/2 (s + t)};

m FindRules[MasterIntegrals[]]

Or save rules to a file with

m Internal

m External

m WriteRules[MasterIntegralsl[],
FIREPath <> "examples/doublebox"];

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

2. Finding equivalents between master integrals

m The file contains 4 lines:
¢r1, {0, 0, 1, 1, 1, 1, 1, 0, 03] ->
{{1, 61, {1, 1, 0, 0, 1, 1, 1, 0, O}1}};
Grt, {1, 0, 0, 1, 1, 1, 1, 0, 03] ->
{{1, a1, {o, 1, 1, 0, 1, 1, 1, 0, O}X1}};

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

2. Finding equivalents between master integrals

m The file contains 4 lines:
¢r1, {0, 0, 1, 1, 1, 1, 1, 0, 03] ->
{{1, 61, {1, 1, 0, 0, 1, 1, 1, 0, O}1}};
Grt, {1, 0, 0, 1, 1, 1, 1, 0, 03] ->
{{1, a1, {o, 1, 1, 0, 1, 1, 1, 0, O}X1}};

m It can be loaded with

LoadRules [FIREPath <> "examples/doublebox", 1];

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

3. The c++ reduction

To run the reduction one has to create a configuration file and
run the c++ FIRE with bin/FIRES -c ConfigFileName

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

3. The c++ reduction

To run the reduction one has to create a configuration file and
run the c++ FIRE with bin/FIRES -c ConfigFileName
#threads 4

#variables d, s, t

#start

#folder examples/

#problem 1 doublebox.start

#integrals doublebox.m

#output doublebox.tables

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

4. Usage of LiteRed

One can produce LiteRed rules and use them with FIRE. This
is demonstrated on one of the examples coming with LiteRed
— a vertex 2-loop diagram.

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

4. Usage of LiteRed

One can produce LiteRed rules and use them with FIRE. This
is demonstrated on one of the examples coming with LiteRed

— 4d
|
]

vertex 2-loop diagram.

FIREPath = <path to the folder with FIRE>;
SetDirectory[FIREPath <>
"extra/LiteRed/Setup/"];

Get["LiteRed.m"];

Get [FIREPath <> "FIRE5.m"];

Internal = {1, r};

External = {p, q};

Propagators = (-Power[##, 2]1) & /@ {1 - r,
1, r,p-1,q-r,p-1l+r,q-r1+ 1};
Replacements = {p> -> 0, q> -> 0; p q ->
-1/2%};

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

4. Usage of LiteRed

m CreateNewBasis[v2, Directory -> FIREPath <>
"temp/v2.dir"];

m GenerateIBP[v2];

m AnalyzeSectors([v2, {0, __}]1;
(basic operations including zero sector
detection)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

4. Usage of LiteRed

m CreateNewBasis[v2, Directory -> FIREPath <>
"temp/v2.dir"];

m GenerateIBP[v2];

m AnalyzeSectors([v2, {0, __}]1;
(basic operations including zero sector
detection)

m FindSymmetries[v2,EMs->True];
(symmetries between sectors)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

4. Usage of LiteRed

m CreateNewBasis[v2, Directory -> FIREPath <>
"temp/v2.dir"];

m GenerateIBP[v2];
m AnalyzeSectors([v2, {0, __}]1;

(basic operations including zero sector
detection)

m FindSymmetries[v2,EMs->True];
(symmetries between sectors)

m SolvejSector /@ UniqueSectors[v2];
(full solution of IBPs)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

4. Usage of LiteRed

m CreateNewBasis[v2, Directory -> FIREPath <>
"temp/v2.dir"];
m GenerateIBP[v2];
m AnalyzeSectors([v2, {0, __}]1;
(basic operations including zero sector
detection)
m FindSymmetries[v2,EMs->True];
(symmetries between sectors)
m SolvejSector /@ UniqueSectors[v2];
(full solution of IBPs)
m DiskSavel[v2];
The solution stage is not guaranteed to work, but at least
symmetries normally help.

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

4. Usage of LiteRed

LiteRed files can be converted so that they can be used by the
c++ FIRE.

m FIREPath = <path to the folder with FIRE>;
m Get[FIREPath <> "FIRE5.m"];
m LoadStart[FIREPath <> "examples/v2"];

m TransformRules[FIREPath <> "temp/v2.dir", FIREPath
<> "examples/v2.lbases", 2];

m SaveSBases[FIREPath <> "examples/v2"];

DA

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

FIRE workflow

m Internal, External, Propagators —
problem.start (initial input)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

FIRE workflow

m Internal, External, Propagators —
problem.start (initial input)

m problem.config, problem.start or
problem.sbases, problem.m (list of integrals),
problem.rules (if exists), problem.lbases (if exists)
— problem.tables (reduction)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

FIRE workflow

m Internal, External, Propagators —
problem.start (initial input)

m problem.config, problem.start or
problem.sbases, problem.m (list of integrals),
problem.rules (if exists), problem.lbases (if exists)
— problem.tables (reduction)

m Internal, External, Propagators,
problem.tables — problem.rules (detection of
equivalent masters)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

FIRE workflow

Internal, External, Propagators —
problem.start (initial input)

problem.config, problem.start or
problem.sbases, problem.m (list of integrals),
problem.rules (if exists), problem.lbases (if exists)
— problem.tables (reduction)

Internal, External, Propagators,
problem.tables — problem.rules (detection of
equivalent masters)

Internal, External, Propagators — folder with
LiteRed rules and symmetries (loading LiteRed)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Usage of FIRE

FIRE workflow

Internal, External, Propagators —
problem.start (initial input)

problem.config, problem.start or
problem.sbases, problem.m (list of integrals),
problem.rules (if exists), problem.lbases (if exists)
— problem.tables (reduction)

Internal, External, Propagators,
problem.tables — problem.rules (detection of
equivalent masters)

Internal, External, Propagators — folder with
LiteRed rules and symmetries (loading LiteRed)
problem.start, folder with LiteRed rules and
symmetries — problem.sbases and problem.lbases
(transforming LiteRed rules)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Organiztion

m Reduction should be performed by the c++ FIRE; provide
the complete list of integrals to be reduced;

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Organiztion

m Reduction should be performed by the c++ FIRE; provide
the complete list of integrals to be reduced;

m Reduction can work in parallel, do not forget the
#threads setting;

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Organiztion

m Reduction should be performed by the c++ FIRE; provide
the complete list of integrals to be reduced;

m Reduction can work in parallel, do not forget the
#threads setting;

m Zero-sectors not covered by restrictions slow the
reduction. If they are not detected properly automatically,
provide them manually or use LiteRed;

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Organiztion

m Reduction should be performed by the c++ FIRE; provide
the complete list of integrals to be reduced;

m Reduction can work in parallel, do not forget the
#threads setting;

m Zero-sectors not covered by restrictions slow the
reduction. If they are not detected properly automatically,
provide them manually or use LiteRed;

m If the diagram has global symmetries, specify them;

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Organiztion

m Reduction should be performed by the c++ FIRE; provide
the complete list of integrals to be reduced;

m Reduction can work in parallel, do not forget the
#threads setting;

m Zero-sectors not covered by restrictions slow the
reduction. If they are not detected properly automatically,
provide them manually or use LiteRed;

m If the diagram has global symmetries, specify them;

m Non-global symmetry rules produced by LiteRed can
improve performance;

FIRE5: a C++ implementation of Feynman Integral REduction

L Optimization

Optimization hints. Organiztion

Reduction should be performed by the c++ FIRE; provide
the complete list of integrals to be reduced;

Reduction can work in parallel, do not forget the
#threads setting;

Zero-sectors not covered by restrictions slow the
reduction. If they are not detected properly automatically,
provide them manually or use LiteRed;

m If the diagram has global symmetries, specify them;

m Non-global symmetry rules produced by LiteRed can

improve performance;

Equivalent master integrals slow the reduction a lot. One
can first make a test run only detecting masters, then
produce rules for equivalents, then do the final run.

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Hardware

m FIRE has two different modes — disk mode and RAM
mode (depending on the way coefficients and other things
are stored while FIRE works)

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Hardware

Disk mode. All databases for all sectors are stored on
disk. It is essential to use a fast local hard disk in this
case. It is also important to have caching set up in your
operating system like an intermidiate buffer before disk
access. While FIRE works with a number of sectors in
parallel, those databases are open (plus one global
database).

FIRE5: a C++ implementation of Feynman Integral REduction

L Optimization

Optimization hints. Hardware

Disk mode. All databases for all sectors are stored on
disk. It is essential to use a fast local hard disk in this
case. It is also important to have caching set up in your
operating system like an intermidiate buffer before disk
access. While FIRE works with a number of sectors in
parallel, those databases are open (plus one global
database).

RAM mode. The open databases are in-memory
databases. However after work is over in a sector, it is
dumped to disk. This mode does not need caching and
requires more RAM than in the disk mode, but it does
not rely that much on the disk speed.

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Hardware

m Choose an appropriate mode for you. In both cases one
should have enough RAM to prevent swapping and
enough disk space to avoid crashes with the “can’t write”
message.

FIRE5: a C++ implementation of Feynman Integral REduction
I—Optimizal:ion

Optimization hints. Hardware

m Choose an appropriate mode for you. In both cases one
should have enough RAM to prevent swapping and
enough disk space to avoid crashes with the “can’t write”
message.

m The more threads are in use, the more RAM FIRE needs.
Sometimes one has to use less threads (the #threads
setting) than the number of processor cores globally or
only at the substitution stage (the #sthreads setting).
In this case the number of fermat processes can be
increased with the #fhreads setting.

DA

m There is a nice program FIRE that you can use for
integral reduction

m)

«0O0)>» «F»r «=>»

<

DA

FIRE5: a C++ implementation of Feynman Integral REduction

L Conclusion

	FIRE
	Usage of FIRE
	Optimization
	Conclusion

