
FIRE5: a C++ implementation of Feynman Integral REdution

FIRE5: a C++ implementation of

Feynman Integral REdution

A.V. Smirnov

Sienti� Researh Center, MSU

July 24, 2015



FIRE5: a C++ implementation of Feynman Integral REdution



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

The goal of this talk is to present the new version FIRE.

FIRE - Feynman Integral REdution

FIRE an be downloaded from http://git.sander.su/fire

http://git.sander.su/fire


FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Feynman integrals

Feynman integrals over loop momenta:

F(a
1

, . . . , a
n

) =

∫

· · ·

∫

d

d

k

1

. . . d
d

k

h

E

a

1

1

. . .E a

n

n

.

Currently one needs to evaluate millions of Feynman

integrals with di�eent indies a

i

oresponding to a

partiular diagram, so evaluating eah of them

analytially turns into an unreal task.



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Evaluation of Feynman integrals

Evaluation of Feynman integrals an be divided into two parts:



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Evaluation of Feynman integrals

Evaluation of Feynman integrals an be divided into two parts:

redution � representing all required integrals as linear

ombinations of so-alled master integrals;



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Evaluation of Feynman integrals

Evaluation of Feynman integrals an be divided into two parts:

redution � representing all required integrals as linear

ombinations of so-alled master integrals;

evaluation of master integrals.



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Evaluation of Feynman integrals

Evaluation of Feynman integrals an be divided into two parts:

redution � representing all required integrals as linear

ombinations of so-alled master integrals → FIRE;

evaluation of master integrals



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Relation types

Most ommonly used relations: IBP relations (Chetyrkin,

Tkahev).

∫

. . .

∫

d

d

k

1

. . . d
d

k

n

∂

∂k
i

(

p

j

1

E

a

1

1

. . .E a

n

n

)

= 0 ,



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Relation types

Most ommonly used relations: IBP relations (Chetyrkin,

Tkahev).

∫

. . .

∫

d

d

k

1

. . . d
d

k

n

∂

∂k
i

(

p

j

1

E

a

1

1

. . .E a

n

n

)

= 0 ,

→
∑

α
i

F (a
1

+ b

i ,1, . . . , an + b

i ,n) = 0 ,



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Relation types

Symmetry relations, e.g.,

F (a
1

, . . . , a
n

) = (−1)d1a1+...d
n

a

n

F (aσ(1), . . . , aσ(n)),



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Relation types

Symmetry relations, e.g.,

F (a
1

, . . . , a
n

) = (−1)d1a1+...d
n

a

n

F (aσ(1), . . . , aσ(n)),

Boundary onditions:

F (a
1

, a
2

, . . . , a
n

) = 0 when a

i

1

≤ 0, . . . a
i

k

≤ 0

for some subsets of indies i

j

;



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Multiple programs for Feynman integral redution

AIR

FIRE

Reduze

LiteRed



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Multiple programs for Feynman integral redution

AIR

FIRE

Reduze

LiteRed

di�erent private implementations



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Multiple programs for Feynman integral redution

AIR

FIRE

Reduze

LiteRed

di�erent private implementations

more publi algorithms going to appear?



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Multiple programs for Feynman integral redution

AIR

FIRE

Reduze

LiteRed

di�erent private implementations

more publi algorithms going to appear? WATER,

EARTH



FIRE5: a C++ implementation of Feynman Integral REdution

Introdution

Multiple programs for Feynman integral redution

AIR

FIRE

Reduze

LiteRed

di�erent private implementations

more publi algorithms going to appear? WATER,

EARTH and 5th element



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Versions of FIRE

FIRE1, FIRE2 � mythial versions that existed only in

private, based mostly on Gr�obner bases



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Versions of FIRE

FIRE1, FIRE2 � mythial versions that existed only in

private, based mostly on Gr�obner bases

FIRE3 � �rst publi version in Wolfram Mathematia



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Versions of FIRE

FIRE1, FIRE2 � mythial versions that existed only in

private, based mostly on Gr�obner bases

FIRE3 � �rst publi version in Wolfram Mathematia

FIRE4 � upgraded Mathematia version, master integral

identi�ation (tsort by Alexey Pak), usage of redution

rules (LiteRed)



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Versions of FIRE

FIRE1, FIRE2 � mythial versions that existed only in

private, based mostly on Gr�obner bases

FIRE3 � �rst publi version in Wolfram Mathematia

FIRE4 � upgraded Mathematia version, master integral

identi�ation (tsort by Alexey Pak), usage of redution

rules (LiteRed)

FIRE5 � Mathematia and ++



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

n 1 2 3 4

Mathematia 640 1453 2061 3958

C++, 1 thread, disk mode 134 168 255 552

C++, 4 threads, disk mode 76 100 163 323

C++, 1 thread, RAM mode 107 136 210 473

C++, 4 threads, RAM mode 49 74 108 237

Table : Timings for the on-shell massless double box example, n is

the total power of irreduible numerators



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Installation of FIRE:

Either download a binary pakage from

http://git.sander.su/fire/downloads and hope

that it works for your system

http://git.sander.su/fire/downloads


FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Installation of FIRE:

Either download a binary pakage from

http://git.sander.su/fire/downloads and hope

that it works for your system

Or download the soure with git and build it yourself (this

also gives you aess to dev versions of FIRE)

Building from soures requires KyotoCabinet and Snappy

libraries, but they are shipped with FIRE.

http://git.sander.su/fire/downloads


FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Installation from soures:

git lone https://bitbuket.org/feynmanIntegrals/�re.git

&& d �re/FIRE5



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Installation from soures:

git lone https://bitbuket.org/feynmanIntegrals/�re.git

&& d �re/FIRE5

make dep (to build the dependenies)



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Installation from soures:

git lone https://bitbuket.org/feynmanIntegrals/�re.git

&& d �re/FIRE5

make dep (to build the dependenies)

make



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Installation from soures:

git lone https://bitbuket.org/feynmanIntegrals/�re.git

&& d �re/FIRE5

make dep (to build the dependenies)

make

To download the latest version: git pull



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Installation from soures:

git lone https://bitbuket.org/feynmanIntegrals/�re.git

&& d �re/FIRE5

make dep (to build the dependenies)

make

To download the latest version: git pull

Swith to dev version: git hekout dev



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Struture of FIRE

The Mathematia part FIRE5.m � used as the main

frontend to provide input and to analyze output



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Struture of FIRE

The Mathematia part FIRE5.m � used as the main

frontend to provide input and to analyze output

The ++ binary bin/FIRE5 � e�iently performs

redution without Mathematia



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Struture of FIRE

The Mathematia part FIRE5.m � used as the main

frontend to provide input and to analyze output

The ++ binary bin/FIRE5 � e�iently performs

redution without Mathematia

extra/ferl64 (extra/ferm64) � the fermat program by

Robert Lewis performing algebrai simpli�ations



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Struture of FIRE

The Mathematia part FIRE5.m � used as the main

frontend to provide input and to analyze output

The ++ binary bin/FIRE5 � e�iently performs

redution without Mathematia

extra/ferl64 (extra/ferm64) � the fermat program by

Robert Lewis performing algebrai simpli�ations

LiteRed pakage by Roman Lee � an be used to provide

additional redution rules or symmetries



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Struture of FIRE

The Mathematia part FIRE5.m � used as the main

frontend to provide input and to analyze output

The ++ binary bin/FIRE5 � e�iently performs

redution without Mathematia

extra/ferl64 (extra/ferm64) � the fermat program by

Robert Lewis performing algebrai simpli�ations

LiteRed pakage by Roman Lee � an be used to provide

additional redution rules or symmetries

bin/KLink � auxilirary binary used to aess

Kyotoabinet databases from Mathematia



FIRE5: a C++ implementation of Feynman Integral REdution

FIRE

Struture of FIRE

The Mathematia part FIRE5.m � used as the main

frontend to provide input and to analyze output

The ++ binary bin/FIRE5 � e�iently performs

redution without Mathematia

extra/ferl64 (extra/ferm64) � the fermat program by

Robert Lewis performing algebrai simpli�ations

LiteRed pakage by Roman Lee � an be used to provide

additional redution rules or symmetries

bin/KLink � auxilirary binary used to aess

Kyotoabinet databases from Mathematia

bin/FLink � auxilirary binary used to run fermat from

Mathematia



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

0. Loading FIRE in Mathematia

SetDiretory[<path to the folder with FIRE>℄;

Get["FIRE5.m"℄;

or



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

0. Loading FIRE in Mathematia

SetDiretory[<path to the folder with FIRE>℄;

Get["FIRE5.m"℄;

or

FIREPath = <path to the folder with FIRE>;

Get[FIREPath<>"FIRE5.m"℄;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

p1
1

5

p2

2

p3

7

p4

3

6

4



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Creating a start �le in Mathematia

Internal = {k1, k2};



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Creating a start �le in Mathematia

Internal = {k1, k2};

External = {p1, p2, p3};



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Creating a start �le in Mathematia

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = {-k1

2

, -(k1 + p1 + p2)

2

, -k2

2

,

-(k2 + p1 + p2)

2

, -(k1 + p1)

2

, -(k1 - k2)

2

,

-(k2 - p3)

2

, -(k2 + p1)

2

, -(k1 - p3)

2

};



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Creating a start �le in Mathematia

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = {-k1

2

, -(k1 + p1 + p2)

2

, -k2

2

,

-(k2 + p1 + p2)

2

, -(k1 + p1)

2

, -(k1 - k2)

2

,

-(k2 - p3)

2

, -(k2 + p1)

2

, -(k1 - p3)

2

};

Replaements = {p1

2

-> 0, p2

2

-> 0, p3

2

-> 0,

p1 p2 -> s/2,

p1 p3 -> t/2, p2 p3 -> -1/2 (s + t)};



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Creating a start �le in Mathematia

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = {-k1

2

, -(k1 + p1 + p2)

2

, -k2

2

,

-(k2 + p1 + p2)

2

, -(k1 + p1)

2

, -(k1 - k2)

2

,

-(k2 - p3)

2

, -(k2 + p1)

2

, -(k1 - p3)

2

};

Replaements = {p1

2

-> 0, p2

2

-> 0, p3

2

-> 0,

p1 p2 -> s/2,

p1 p3 -> t/2, p2 p3 -> -1/2 (s + t)};

PrepareIBP[℄; Prepare[AutoDetetRestritions

-> True℄; SaveStart["doublebox"℄;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Redution in Mathematia

LoadStart["doublebox",1℄; Burn[℄;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Redution in Mathematia

LoadStart["doublebox",1℄; Burn[℄;

You an load multiple start �les a time!

F[1, {1, 1, 1, 1, 1, 1, 1, -1, -1}℄



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Redution in Mathematia

LoadStart["doublebox",1℄; Burn[℄;

You an load multiple start �les a time!

F[1, {1, 1, 1, 1, 1, 1, 1, -1, -1}℄

or a better way for multiple integrals:

EvaluateAndSave[{{1, {1, 1, 1, 1, 1, 1, 1,

-1, -1}},

{1, {1, 1, 1, 1, 1, 1, 1, 0,

-2}}},"doublebox.tables"℄



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

1. Redution in Mathematia

LoadStart["doublebox",1℄; Burn[℄;

You an load multiple start �les a time!

F[1, {1, 1, 1, 1, 1, 1, 1, -1, -1}℄

or a better way for multiple integrals:

EvaluateAndSave[{{1, {1, 1, 1, 1, 1, 1, 1,

-1, -1}},

{1, {1, 1, 1, 1, 1, 1, 1, 0,

-2}}},"doublebox.tables"℄

Later load a new kernel, load the start �le and...

LoadTables["doublebox.tables"℄;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE automatilly starts the redution from the top-level

setors, then lower and lower (already with the knowledge

of what integrals are required at this level). Then it

performs the bakward-substitutions;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE automatilly starts the redution from the top-level

setors, then lower and lower (already with the knowledge

of what integrals are required at this level). Then it

performs the bakward-substitutions;

The same is true for the ++ FIRE, however it an also

work in parallel with setors of the same level (the

number of positive indies).



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

2. Finding equivalents between master integrals

During the main redution phase FIRE annot �nd equivalents

between master integrals in di�erent setors.

MasterIntegrals[℄



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

2. Finding equivalents between master integrals

During the main redution phase FIRE annot �nd equivalents

between master integrals in di�erent setors.

MasterIntegrals[℄

{{1, {0, 0, 0, 0, 1, 1, 1, 0, 0}}, {1, {0, 0, 1,

1, 1, 1, 0, 0, 0}},{1, {0, 0, 1, 1, 1, 1, 1, 0,

0}}, {1, {0, 1, 1, 0, 0, 1, 0, 0, 0}}, {1, {0, 1,

1, 0, 1, 1, 1, 0, 0}}, {1, {1, 0, 0, 1, 0, 1, 0,

0, 0}}, {1, {1, 0, 0, 1, 1, 1, 1, 0, 0}}, {1, {1,

1, 0, 0, 0, 1, 1, 0, 0}}, {1, {1, 1, 0, 0, 1, 1,

1, 0, 0}}, {1, {1, 1, 1, 1, 0, 0, 0, 0, 0}}, {1,

{1, 1, 1, 1, 1, 1, 1, 0, 0}}, {1, {1, 1, 1, 1, 1,

1, 1, -1, 0}}}



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

2. Finding equivalents between master integrals

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = {-k1

2

, -(k1 + p1 + p2)

2

, -k2

2

,

-(k2 + p1 + p2)

2

, -(k1 + p1)

2

, -(k1 - k2)

2

,

-(k2 - p3)

2

, -(k2 + p1)

2

, -(k1 - p3)

2

};

Replaements = {p1

2

-> 0, p2

2

-> 0, p3

2

-> 0,

p1 p2 -> s/2,

p1 p3 -> t/2, p2 p3 -> -1/2 (s + t)};



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

2. Finding equivalents between master integrals

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = {-k1

2

, -(k1 + p1 + p2)

2

, -k2

2

,

-(k2 + p1 + p2)

2

, -(k1 + p1)

2

, -(k1 - k2)

2

,

-(k2 - p3)

2

, -(k2 + p1)

2

, -(k1 - p3)

2

};

Replaements = {p1

2

-> 0, p2

2

-> 0, p3

2

-> 0,

p1 p2 -> s/2,

p1 p3 -> t/2, p2 p3 -> -1/2 (s + t)};

FindRules[MasterIntegrals[℄℄



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

2. Finding equivalents between master integrals

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = {-k1

2

, -(k1 + p1 + p2)

2

, -k2

2

,

-(k2 + p1 + p2)

2

, -(k1 + p1)

2

, -(k1 - k2)

2

,

-(k2 - p3)

2

, -(k2 + p1)

2

, -(k1 - p3)

2

};

Replaements = {p1

2

-> 0, p2

2

-> 0, p3

2

-> 0,

p1 p2 -> s/2,

p1 p3 -> t/2, p2 p3 -> -1/2 (s + t)};

FindRules[MasterIntegrals[℄℄

Or save rules to a �le with

WriteRules[MasterIntegrals[℄,

FIREPath <> "examples/doublebox"℄;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

2. Finding equivalents between master integrals

The �le ontains 4 lines:

G[1, {0, 0, 1, 1, 1, 1, 1, 0, 0}℄ ->

{{1, G[1, {1, 1, 0, 0, 1, 1, 1, 0, 0}℄}};

G[1, {1, 0, 0, 1, 1, 1, 1, 0, 0}℄ ->

{{1, G[1, {0, 1, 1, 0, 1, 1, 1, 0, 0}℄}};

G[1, {1, 1, 0, 0, 0, 1, 1, 0, 0}℄ ->

{{1, G[1, {0, 0, 1, 1, 1, 1, 0, 0, 0}℄}};

G[1, {1, 0, 0, 1, 0, 1, 0, 0, 0}℄ ->

{{1, G[1, {0, 1, 1, 0, 0, 1, 0, 0, 0}℄}};



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

2. Finding equivalents between master integrals

The �le ontains 4 lines:

G[1, {0, 0, 1, 1, 1, 1, 1, 0, 0}℄ ->

{{1, G[1, {1, 1, 0, 0, 1, 1, 1, 0, 0}℄}};

G[1, {1, 0, 0, 1, 1, 1, 1, 0, 0}℄ ->

{{1, G[1, {0, 1, 1, 0, 1, 1, 1, 0, 0}℄}};

G[1, {1, 1, 0, 0, 0, 1, 1, 0, 0}℄ ->

{{1, G[1, {0, 0, 1, 1, 1, 1, 0, 0, 0}℄}};

G[1, {1, 0, 0, 1, 0, 1, 0, 0, 0}℄ ->

{{1, G[1, {0, 1, 1, 0, 0, 1, 0, 0, 0}℄}};

It an be loaded with

LoadRules[FIREPath <> "examples/doublebox", 1℄;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

3. The ++ redution

To run the redution one has to reate a on�guration �le and

run the ++ FIRE with bin/FIRE5 - ConfigFileName



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

3. The ++ redution

To run the redution one has to reate a on�guration �le and

run the ++ FIRE with bin/FIRE5 - ConfigFileName

#threads 4

#variables d, s, t

#start

#folder examples/

#problem 1 doublebox.start

#integrals doublebox.m

#output doublebox.tables



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

4. Usage of LiteRed

One an produe LiteRed rules and use them with FIRE. This

is demonstrated on one of the examples oming with LiteRed

� a vertex 2-loop diagram.



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

4. Usage of LiteRed

One an produe LiteRed rules and use them with FIRE. This

is demonstrated on one of the examples oming with LiteRed

� a vertex 2-loop diagram.

FIREPath = <path to the folder with FIRE>;

SetDiretory[FIREPath <>

"extra/LiteRed/Setup/"℄;

Get["LiteRed.m"℄;

Get[FIREPath <> "FIRE5.m"℄;

Internal = {l, r};

External = {p, q};

Propagators = (-Power[##, 2℄) & /� {l - r,

l, r, p - l, q - r, p - l + r, q - r + l};

Replaements = {p

2

-> 0, q

2

-> 0; p q ->

-1/2};



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

4. Usage of LiteRed

CreateNewBasis[v2, Diretory -> FIREPath <>

"temp/v2.dir"℄;

GenerateIBP[v2℄;

AnalyzeSetors[v2, {0, __}℄;

(basi operations inluding zero setor

detetion)



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

4. Usage of LiteRed

CreateNewBasis[v2, Diretory -> FIREPath <>

"temp/v2.dir"℄;

GenerateIBP[v2℄;

AnalyzeSetors[v2, {0, __}℄;

(basi operations inluding zero setor

detetion)

FindSymmetries[v2,EMs->True℄;

(symmetries between setors)



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

4. Usage of LiteRed

CreateNewBasis[v2, Diretory -> FIREPath <>

"temp/v2.dir"℄;

GenerateIBP[v2℄;

AnalyzeSetors[v2, {0, __}℄;

(basi operations inluding zero setor

detetion)

FindSymmetries[v2,EMs->True℄;

(symmetries between setors)

SolvejSetor /� UniqueSetors[v2℄;

(full solution of IBPs)



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

4. Usage of LiteRed

CreateNewBasis[v2, Diretory -> FIREPath <>

"temp/v2.dir"℄;

GenerateIBP[v2℄;

AnalyzeSetors[v2, {0, __}℄;

(basi operations inluding zero setor

detetion)

FindSymmetries[v2,EMs->True℄;

(symmetries between setors)

SolvejSetor /� UniqueSetors[v2℄;

(full solution of IBPs)

DiskSave[v2℄;

The solution stage is not guaranteed to work, but at least

symmetries normally help.



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

4. Usage of LiteRed

LiteRed �les an be onverted so that they an be used by the

++ FIRE.

FIREPath = <path to the folder with FIRE>;

Get[FIREPath <> "FIRE5.m"℄;

LoadStart[FIREPath <> "examples/v2"℄;

TransformRules[FIREPath <> "temp/v2.dir", FIREPath

<> "examples/v2.lbases", 2℄;

SaveSBases[FIREPath <> "examples/v2"℄;



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE work�ow



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE work�ow

Internal, External, Propagators →

problem.start (initial input)



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE work�ow

Internal, External, Propagators →

problem.start (initial input)

problem.onfig, problem.start or

problem.sbases, problem.m (list of integrals),

problem.rules (if exists), problem.lbases (if exists)

→ problem.tables (redution)



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE work�ow

Internal, External, Propagators →

problem.start (initial input)

problem.onfig, problem.start or

problem.sbases, problem.m (list of integrals),

problem.rules (if exists), problem.lbases (if exists)

→ problem.tables (redution)

Internal, External, Propagators,

problem.tables → problem.rules (detetion of

equivalent masters)



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE work�ow

Internal, External, Propagators →

problem.start (initial input)

problem.onfig, problem.start or

problem.sbases, problem.m (list of integrals),

problem.rules (if exists), problem.lbases (if exists)

→ problem.tables (redution)

Internal, External, Propagators,

problem.tables → problem.rules (detetion of

equivalent masters)

Internal, External, Propagators → folder with

LiteRed rules and symmetries (loading LiteRed)



FIRE5: a C++ implementation of Feynman Integral REdution

Usage of FIRE

FIRE work�ow

Internal, External, Propagators →

problem.start (initial input)

problem.onfig, problem.start or

problem.sbases, problem.m (list of integrals),

problem.rules (if exists), problem.lbases (if exists)

→ problem.tables (redution)

Internal, External, Propagators,

problem.tables → problem.rules (detetion of

equivalent masters)

Internal, External, Propagators → folder with

LiteRed rules and symmetries (loading LiteRed)

problem.start, folder with LiteRed rules and

symmetries → problem.sbases and problem.lbases

(transforming LiteRed rules)



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Organiztion

Redution should be performed by the ++ FIRE; provide

the omplete list of integrals to be redued;



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Organiztion

Redution should be performed by the ++ FIRE; provide

the omplete list of integrals to be redued;

Redution an work in parallel, do not forget the

#threads setting;



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Organiztion

Redution should be performed by the ++ FIRE; provide

the omplete list of integrals to be redued;

Redution an work in parallel, do not forget the

#threads setting;

Zero-setors not overed by restritions slow the

redution. If they are not deteted properly automatially,

provide them manually or use LiteRed;



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Organiztion

Redution should be performed by the ++ FIRE; provide

the omplete list of integrals to be redued;

Redution an work in parallel, do not forget the

#threads setting;

Zero-setors not overed by restritions slow the

redution. If they are not deteted properly automatially,

provide them manually or use LiteRed;

If the diagram has global symmetries, speify them;



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Organiztion

Redution should be performed by the ++ FIRE; provide

the omplete list of integrals to be redued;

Redution an work in parallel, do not forget the

#threads setting;

Zero-setors not overed by restritions slow the

redution. If they are not deteted properly automatially,

provide them manually or use LiteRed;

If the diagram has global symmetries, speify them;

Non-global symmetry rules produed by LiteRed an

improve performane;



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Organiztion

Redution should be performed by the ++ FIRE; provide

the omplete list of integrals to be redued;

Redution an work in parallel, do not forget the

#threads setting;

Zero-setors not overed by restritions slow the

redution. If they are not deteted properly automatially,

provide them manually or use LiteRed;

If the diagram has global symmetries, speify them;

Non-global symmetry rules produed by LiteRed an

improve performane;

Equivalent master integrals slow the redution a lot. One

an �rst make a test run only deteting masters, then

produe rules for equivalents, then do the �nal run.



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Hardware

FIRE has two di�erent modes � disk mode and RAM

mode (depending on the way oe�ients and other things

are stored while FIRE works)



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Hardware

1 Disk mode. All databases for all setors are stored on

disk. It is essential to use a fast loal hard disk in this

ase. It is also important to have ahing set up in your

operating system like an intermidiate bu�er before disk

aess. While FIRE works with a number of setors in

parallel, those databases are open (plus one global

database).



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Hardware

1 Disk mode. All databases for all setors are stored on

disk. It is essential to use a fast loal hard disk in this

ase. It is also important to have ahing set up in your

operating system like an intermidiate bu�er before disk

aess. While FIRE works with a number of setors in

parallel, those databases are open (plus one global

database).

2 RAM mode. The open databases are in-memory

databases. However after work is over in a setor, it is

dumped to disk. This mode does not need ahing and

requires more RAM than in the disk mode, but it does

not rely that muh on the disk speed.



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Hardware

Choose an appropriate mode for you. In both ases one

should have enough RAM to prevent swapping and

enough disk spae to avoid rashes with the �an't write�

message.



FIRE5: a C++ implementation of Feynman Integral REdution

Optimization

Optimization hints. Hardware

Choose an appropriate mode for you. In both ases one

should have enough RAM to prevent swapping and

enough disk spae to avoid rashes with the �an't write�

message.

The more threads are in use, the more RAM FIRE needs.

Sometimes one has to use less threads (the #threads

setting) than the number of proessor ores globally or

only at the substitution stage (the #sthreads setting).

In this ase the number of fermat proesses an be

inreased with the #fhreads setting.



FIRE5: a C++ implementation of Feynman Integral REdution

Conlusion



FIRE5: a C++ implementation of Feynman Integral REdution

Conlusion

There is a nie program FIRE that you an use for

integral redution

:)



FIRE5: a C++ implementation of Feynman Integral REdution

Conlusion


	FIRE
	Usage of FIRE
	Optimization
	Conclusion

