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INTRODUCTION

Hadronic vacuum polarization q q
function II(¢%) plays a central role

in various issues of QCD and

Standard Model. In particular, the theoretical description of
some strong interaction processes and of hadronic contribu-

tions to electroweak observables is inherently based on I1(¢°):

e electron—positron annihilation into hadrons
e inclusive 7 lepton hadronic decay
e muon anomalous magnetic moment

e running of the electromagnetic coupling
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GENERAL DISPERSION RELATIONS

Cross—section of e"¢~— hadrons: :
202 d
0O — 47-‘-2 % LMVA/LV, r
S (0]
where s = ¢° = (p1 +p2)2 > 0, ot n
1 S
Lyv =5 {Q,uqy — gua” — (p1 — p2)u(p1 — pz)u}
Ay = 271y 6(p1+ p2 = pr)(0]Ju(=a)[T)(T] 1 (4)]0),
[

and J, =) f Qr:dvuq: 1s the electromagnetic quark current.

Kinematic restriction: the hadronic tensor A, (¢°) assumes
2

non—zero values only for ¢°> > 4m2 = m?, since otherwise no

hadron state I' could be excited B Feynman (1972); Adler (1974).
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The hadronic tensor can be represented as A, = 2ImlIl,,

9. 11 q2
HW(QQ) = z/ qu<0‘ T{Ju(z) J,(0)}]0) d*e = i(Quay — 99 2) 15%2)'
Kinematic restriction: II(¢%) has the only cut ¢° > m?
Dispersion relation for H(qQ): .
1 H(¢)
A(q, qf) = 5= (¢° — qg)]{ d
omi C (€= )€ —qf) -3

= (7" — q7) / N Hls) ds,

m? (s —¢*)(s — ¢3)

where All(¢? q%) = I1(¢?) — H(q%) and R(s) denotes the measur-

able ratio of two cross—sections

R(s) = —— lim 11(s + ie) — T1(s — ic

271 €—>O_|_

o(eTe” — hadrons; s)

olete” — ptpu=;s)

Kinematic restriction: R(s) =0 for s < m?
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In general, it is also convenient to employ the so—called Adler
function (Q? = —¢> > 0)

dI1(—Q?) ) ) /OO R(s)
D(Q?) = — D(Q?) = d
(@) dinQ? (@) =¢ m2 (s +Q?%)? ’
B Adler (1974); De Rujula, Georgi (1976); Bjorken (1989).

This dispersion relation provides a link between experimen-

tally measurable and theoretically computable quantities.

The inverse relations between the 4 Im¢

functions on hand read

1 S—1€ d
R(s) = — lim / D(—O?Ca Z stie | Ret

271 e—01 S+ie
B Radyushkin (1982); Krasnikov, Pivovarov (1982) 0 m_ -
Q d
2 2 o
All(-Q% =CQ5) = — | Do)
G o

B Nesterenko (2013).
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The complete set of relations between I1(¢?), R(s), and D(Q?):

o0 R o d
All(q*, q7) = (4" — q) / » (o = q2)(2 — @) do = - 2 D( ) cj
m 40
. 1 S—1€ d
R(s) = %612& [H(S + 1€) — H(s — 28)} = %giﬂ& /SH.8 D(_C)fcv

dT1(—Q
D(Q) = - dan2 N /m a+Q2) dor

Derivation of these relations requires only the location of cut

of I1(¢°) and its UV asymptotic. Neither additional approxi-

mations nor phenomenological assumptions are involved.

Nonperturbative constraints:

e I1(¢°): has the only cut ¢*> > m?;

e R(s): embodies ﬂz—terms, vanishes for s < m2;

e D(Q?): has the only cut Q° < —m?, vanishes at Q? — 0.
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DISPERSIVE APPROACH TO QCD

Functions on hand in terms of the common spectral density:

- 2,2 92
2 9 An(0).2 2 o—q-m”—qj\do
A, qf) = At )+ | | p<“)1“<a—q3m2—q2 2
o d
R(s) = R(s) + 6(s — m?) / plo) =,
< o
2 00 —m?do
D(Q?) = D(Q? e / ———
(Q) (Q>+Q2+m2 . p(0)0_+Q2 O"
1 d . . d?“(J) 1 . -
SR —ig) = — = —Im lim a(—o —
plo) wd Ino mgg&p(a 2 dlno mei{]&r( 7 )

where AI0)(42, ), RO)(s), DU)(Q?) denote the leading—order

terms and p(¢?), r(s), d(Q?) stand for the strong corrections

B Nesterenko, Papavassiliou (2005-2007); Nesterenko (2007-2014).
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Derivation of obtained representations involves neither ad-
ditional approximations nor model-dependent assumptions,

with all the nonperturbative constraints being embodied.

The leading—order terms of the functions on hand read

—tang _pp—tangy o ¢
A2, @) =27 9 _ 4
", 40) tans¢ tandpg Y m?’
2\3/2 2
RO(s) = 4(s — m?) (1 _ ﬁ) - sinpg = 20

2 S m QZ

DG =1 + : [1 /11 e ! sinh_l(fl/Q)} ¢= =

m

B Feynman (1972); Akhiezer, Berestetsky (1965).

Perturbative contribution to the spectral density:
l dlmppert<0- _ ZO‘|‘> B drpert(0-> - 1

IOpert<U — . dlno - dlno — ; Im dpert(_o- _ ZO—I‘))
one—loop level: péle)rt(a) = (4/By)[In*(o/A?) + 7)1,

higher—loops: B Nesterenko, Simolo (2010, 2011); Bakulev (2013); Cvetic (2015).
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Note on the massless limit

In the limit m = 0 the obtained integral representations read

AL, q) = —ln(_—QQ) +/Ooop(0) m_l (o)) do

—d 1—(o/qp)] o
ris) =00s) |1+ [ o) %7 |
D(Q2> =1+ /OOng_iUQ)QZ do.

For p(o) = p,.(0) two highlighted massless equations become

identical to those of the APT  m Shirkov, Solovtsov, Milton (1997-2007).

But it is essential to keep the threshold m nonvanishing:

e massless limit loses some of nonperturbative constraints

e effects due to m # 0 become substantial at low energies
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HADRONIC VACUUM POLARIZATION FUNCTION

Comparison of obtained results with lattice simulation data:

5

4l
3L
oL

1k

(@) = AT, ~¢7) | Both PT and APT fail to de-

DPT

.......

scribe TI(¢%) at low energies:

PT PT: Il(¢°) possesses infrared

unphysical singularities

......... W GV APT: II(¢%) diverges in IR limit

B Della Morte, Jager, Juttner, Wittig (2011-2015); Nesterenko (2014, 2015).

PT
APT
DPT

unphysical singularities | agreement with lattice
contains disagrees
free disagrees
free agrees
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ADLER

FUNCTION

massless limit (m = 0)

realistic case (m # 0)

15 D(Q?) " 15 D(Q?) .
1 ’ -\\\ .\'\
. [ 1 e -\_.\.’:‘:-_-_.__ -——
R e
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B Nesterenko, Papavassiliou (2006); Nesterenko (2007-2009).

unphysical singularities

agreement with data

PT
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free

free
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Some attempts to improve IR behavior of D(Q?) within APT:

APT 4 relativistic quark
mass threshold resummation:
1.5 r r r r .
: 2 [ plot taken from MPLA21(2006)] A
| D(Q) _
10l p | -
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2my, g = 520 MeV >~ dmy

B Milton, Solovtsov, Solovtsova (2001-2006)
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APT 4+ vector meson domi-

nance assumption:

12 L [ plot taken from NPBPS164(2007)] -
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VMD NW approximation
and cut—off at My ~ 740 MeV

Bl Cvetic et al. (2005-2015)
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MUON ANOMALOUS MAGNETIC MOMENT

The theoretical description of a, = (g, — 2)/2 is a long-

standing challenging issue of the elementary particle physics.

Experiment: a;;” = (11659208.9 & 6.3) x 107!V (0.54 ppm)
B Muon (g-2) Collaboration (2006); Roberts (2010).

. theor QED EW HLO HHO HIbl
Theory: a, =0y +ap; +a,; Ao +ay,

ag™ = (11658471.895120.0080) x 1071V Aoyama, Hayakawa, Kinoshita, Nio (2012)

CL/EiW (15 36 £+ 0. 10) X 10~ 10 Gnendiger, Stockinger, Stockinger—Kim (2013)

CLIEHO ( 9.84 £ 0. 07) x 107 10 Hagiwara, Liao, Martin, Nomura, Teubner (2011)

™ = (11.6 £ 4.0) x 1071 nyffeler (201).

The uncertainty of theoretical estima-

tion of a, is mainly dominated by the

i

leading—order hadronic contribution !

L4
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The latter involves the integration of I1(¢°) over low energies:

2 D
1 [« > C \ = dC 1 y(x)
HLO
= — | — _— H —_— —
0 =3(5) [ )10 g 10 =
where y(,CE) = x(\/l + - 1) B Lautrup, Peterman, de Rafael (1972).

Dispersive approach enables one

E821
to evaluate a," without invok- A —
ing experimental data on R(s): su ,
A = (696.1 £ 9.5) x 107", DMz 1)

This result agrees fairly well ouvzie  —n
HLO
/L This work

The complete SM prediction = . ... e

150 160 170 180 190 Aauxlom 220

— (11659185.1 & 10.3) x 10~ [Aa, = a, — ag, ag = 11650 x 1077

with recent assessments of a

U
differs from a,;’ by two standard deviations = Nesterenko (2015).
u DY
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ELECTROMAGNETIC FINE STRUCTURE CONSTANT

The electromagnetic running coupling a,_(¢°) plays a central

role in a variety of issues of precision particle physics:
o)

1= A&lep(q2> — Acy,q(¢°)
with o = e?/(47) ~ 1/137.036 being the fine structure constant.

lopn (@)

Leptonic contribution to «a_(¢*) can be calculated within per-
turbation theory: Aalep(MZQ) — (314.979£0.002) X 10™* m Sturm (2013).

However, the respective hadronic contribution involves the
integration over the low—energy range
Q > R(s) ds
A« MQ———wﬂf
had( Z) 37_‘_ 7 m2 g — MZ2 S

and constitutes the prevalent source of uncertainty of o, (M?).
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As usual, the top quark con-

HLMNT’11 ————
tribution to a, (¢?) is taken

J'11 ———
into account separately:
Aal®(M2Z) = (—0.70£0.05)x10™+ =0 T
B Kuhn, Steinhauser (1998). DHMZ'12(e) S

The evaluation of Ao‘gd( M?) This work

in the framework of disper-

sive approach leads to

Aol (M2) = (274.9 £2.2) x 1072

The obtained assessment appears to be in a good agreement

with recent estimations of Aagd(MZQ) and eventually yields

o H(MZF) = 128.962 £ 0.030
B Nesterenko (2015).
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SUMMARY

@ The integral representations for I1(¢*), R(s), and D(Q?) are

derived in the framework of dispersive approach to QCD

@® These representations merge the corresponding perturba-
tive input with intrinsically nonperturbative constraints,

which originate in the respective kinematic restrictions

@® The obtained results are in a good agreement with relevant

lattice data and low—energy experimental predictions

® The developed approach yields reasonable assessments of
the hadronic contributions to electroweak observables
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