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1. Introduction to the theoretical principles of hadron
collisions:

1.1.Factorization, initial state evolution and PDFs

2. Phenomenological applications, review and
Interpretation of LHC data:

2.1.Drell-Yan processes

2.2.Jet production
2.3.Top quark physics



.. things Pll give for granted you know ..

¥ quarks and gluons

¥ mesons and baryons

¥ asymptotic freedom

¥ Feynman diagrams and Feynman rules

¥ basic knowledge of what high-energy hadronic collisions are
about:

e production and study of jets, heavy quarks (bottom, top)
e production and study of W/Z bosons,
e production and study of Higgs bosons,

e search for pnenomena beyond the Standard Model
(supersymmetry, dark matter, new gauge forces, etc.)



Factorization Theorem
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Universality of parton densities and
factorization, an intuitive picture

1) Exchange dhard gluons among g g >0 = dq 1
= : q q "= — ~ —

guarks inside the proton is ¢ ¢ 0 b 02
suppressed by powers of Q)2

Assuming
asymptotic
freedom!
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2) Typical time-scale of interactions
binding the proton is therefore of

O(1/mp) (in a frame In which the proton . ffﬁa ffqa

has energy BE=y/mp = Eimg?)

3) If a hard probe (Q>>m;) hits the proton, on a time scale =1/Q, there is no
time for quarks to negotiate a coherent response. The struck quark

receives no feedback from its pals, and acts as a free particle
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As a result, to study inclusive processes at large Q it is sufPcient to consic
the interactions between the external probe and a single parton:

1) calculable in perturbative QCD (pQCD)

2) do not affect f(x): Kefore = Xafter

q>Q Q
T ST,

£af D 3

A

b

<, This gluon cannot be
QL Q Q Q Q Q
reabsorbed because
the quark is gone
q<Q 1) Xy afore * Xafter <2feCt f(X)!

2) for g=1 GeVnot calculable in pQCD

However, sincer(g=1GeV)>>1/Q, the emission of low-virtuality gluons will take
place long before the hard collision, and therefore cannot depend on the detailes
nature of the hard probe.While it is not calculable in pQCD, f(g<<Q) can be
measured using a reference probe, and used elsewhere

I Universality of fIx"



Q dependence of

. Q>
parton densities u>q
X, X:yxin X:Xin
IN ‘tfee u 3

€022 9292929998889

The larger is Q, the more gluons wiibt have time to be reabsorbed

~

f(x,Q) = f(x,u)+/xld>qnf(>qn,u) /ququoldyP(y,qz)ﬁ(x—yxn)
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f(x,Q) = f(x,u)+/xld>qnf(>qn,u) AQd&/OIdyRy,qz)é(X—yxn)

f(x,Q) should be independent of the intermediate sqaleonsidered:

df(x,Q df(x, td
S0 B [

One can prove that: |
7 calculable in pQCD

s 1 P(x)

P(x,0% = _Q2

and Pnally (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi DGLAP equation):

df(x p
dlog 2

=;/de—;/f(y,u)P(xly)



More In general, one should consider additional processes which lead to the
evolution of partons at high Q (tzlogé:

gl [ dxrs = [ 100~ 1(1]g0)ds

><

dq(x, 1" 1dy
q( Q) — _"5 y q(yaQ qu _|_ gya qu

dt 2" x Yy
1 + x?
%'5\ Pyy(x CF(l_ )

P(x) = 5 X +(1—x)2

d 1. rid
g(c)l(t 2 - 2_/ yy [g(y Q) Pog(- ) + # a(y, Q) Pyql )}

C1+(1! x)? 55 Q ;%
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Note: origin of logs
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Soft emission cannot lead to a physical
divergence, however, since it is not observable

Xin Xout

G

\P\Q'Q__Q

kO =0 <z Xout = Xin

The soft-emission divergence must cancel
against the IR divergence of the virtual diagram

Xin Xout

& 3
\P{{u R

The cancellation cannot take place in the case of
collinear divergence, sine®ut # Xin , SO Vvirtual
and real conbPgurations are not equivalent



Things are different i° = 0. In this case, agaXeut # Xin , NO
virtual-real cancellation takes place, and an extra singularity due
to the 1/p ° pole appears

These are calledmall-x logarithms.They give rise to the double-log
growth of the number of gluons at smalland largeQ



Example: charm in the proton

E%é detx, Q) — &/1 %8(%Q)qu(§)

dt 27 Jy

Assuming a typical behaviour of the gluon densgyx, Q) ~ Al x

. 1! )
and using  P(x) = 5 *+(1—-x)* we get;

de(x,Q) 1a,’y 2y O A
dt 2n/ y 8(x/y,Q) /d =Gy

2

and therefore: c(x,Q) ~ alog(Q ) 8(x,0)

Corrections to this simple formula will arise due to the Q dependence of g(x) arxsof
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Numerical example
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10-1 — Solid: x*charm(x) — 107! Solid: x*bottom(x) —
O ag /61 x*g(x) log(Q/mece) O g /6T xx%g(x) log(Q/mb)
-2 L Q=1000 GeV | e | Q51000 Gev N
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Excellent agreement, given the simplicity of the approximation!

Can be improved by tuning the argument of the log (threshold
onset), including a better parameterization of g(x), etc....
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General properties of the PDF evolution

Ldr

Debnition of n-th moment: g, = — "g(x)
0

In moment space, the evolution egs become coupled linear differential equations

dfi(n)

dt 2w
df(n)

dt 2w

Os [P p) | pln) p(m)]

[P o+ PL £

or, equivalently:

df(n) B |_S
dt 2"

d M1y
dt 2"
av") _

dt

C on

P 1 (M) 4 pin) pn)

(n) | (n) (n) £ (n)
[qu 1 (M 420 P £ }

}3(”) ()

exercise!

where we debne OsingletO and
OvalenceO distributions as:

@)= i@+ A
V)= B! fH)

|
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Valence sum rule

1
(D — / dgjz (fq(x) ! fs(x)) = N(valence quarks) = constant
0

dv ) |
10" 2PVl =
dt 2"

Thus

0

1
Since W=3, we must have =0, i.e. / dz Pyy(2) =0
0

This requires to modify &(z) as follows:

1+ 72 1+ 72
Pqa(Zz) | H# "
qQ( ) ( 1" Z)+ 1" Z

1 1
/ dz f(z)[g(z)]4 ! / dr[f(z) " f(D)]g(z)
0 0

@ z)/ dy (1+y

Subtraction of the

)

virtual singularity

& J
egss”

:
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Momentum sum rule (  exercise )

| . -
l 3
dxx # fi(x)+ fg(x)&1 1 @+ f 2 =1

0 o
i, i

This implies

2 2) —
W) P+ PR =0

2 2)
2) P2 +2n;PP =0

(1) is trivially true ¢heck)
(2) requires a modibcation offto subtract soft virtual singularityweérify):

Poo t 200 { gt Tl ) b a o) | DEAE

Subtraction of Subtraction of

gluon loop in quark loop in
virtual diagrams virtual diagrams




General solution of the PDF evolution

log Q2/A2 Pq(g)/Q’}Tbo ( ) , a (IJ2) Pq(g)/Qﬂ'bo
—y n —ONE J
log u2/A2] (1) [@s(Q2>]

* see footnote next page

Verify that all moments R™ are negative. Therefore as Q grows, all moments decrea
The valence distribution becomes softer and softer.

V@) =V |

For 2™ and ¢ one needs to diagonalize the 2x2 matrix. In the case of n=2,
corresponding to the momentum fraction carried by gluons and quarks, simple
asymptotic solutions (&~ o) can be obtainedexercise):

P2 5@ 20, PP f2 =0 (=@ — constant at large Q)
2 2)
2@ 4 @ =1 (sum rule)
1
(2) =
== 1+ 4Ce
Nt
c@ - ACF ¢@ _ 4ce _ 16
g =

4CF T Ny 1 (2) T - 3nf 18



Footnote: s running

d! 2
09
dlog i
B(as) = —boo? (1+ Vs +...) py — 11CA — 20y
127
LO NLO by — 17Ci—5CAnf—SCpnf
27(11C4 — 2ny)
B(x) for QCD is known up to
NNNLO (4-loops)
At LO
1
| 2y =
At NLO
5 1 b’ loglog p? /A2

() = g Tog 12/

by logp?/A2
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Examples of PDFs and their evolution
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Note:
sea~10% glue

Note:
charm=up at

high Q



