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Outline

1. Introduction to the theoretical principles of hadron 
collisions: 

1.1. Factorization, initial state evolution and PDFs

2. Phenomenological applications, review and 
interpretation of LHC data:

2.1. Drell-Yan processes

2.2. Jet production

2.3. Top quark physics
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.. things I’ll give for granted you know ..

¥ quarks and gluons

¥ mesons and baryons

¥ asymptotic freedom

¥ Feynman diagrams and Feynman rules

¥ basic knowledge of what high-energy hadronic collisions are 
about:

• production and study of jets, heavy quarks (bottom, top)

• production and study of  W/Z bosons, 

• production and study of Higgs bosons, 

• search for phenomena beyond the Standard Model 
(supersymmetry, dark matter, new gauge forces, etc.)

3



Factorization Theorem
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§  transition from partonic Þnal 
state to the hadronic observable 
!hadronization, fragm. function, 
jet deÞnition, etc"
§  Sum over all histories with X 
in them
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f j (x,Q)

§  sum over all initial state 
histories leading, at the 
scale Q, to: 
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p j = x

! 
P proton

Parton distribution 
functions (PDF)
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Universality of parton densities and 
factorization, an intuitive picture
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Assuming 
asymptotic 
freedom!

q qExchange of hard gluons among 
quarks inside the proton is 
suppressed by powers of (mp/Q)2

q>Q⇠
Z •

Q

d4q
q6 ⇠ 1

Q2

1)

Typical time-scale of interactions 
binding the proton is therefore  of 
O(1/mp) (in a frame in which the proton 
has energy E, τ=γ/mp = E/mp2)

τ≈1/mp

2)

If a hard probe (Q>>mp) hits the proton, on a time scale =1/Q, there is no 
time for quarks to negotiate a coherent response. The struck quark 
receives no feedback from its pals, and acts as a free particle

3)



!  Universality of f!x"

However, since τ(q≈1GeV)>>1/Q, the emission of low-virtuality gluons will take 
place long before the hard collision, and therefore cannot depend on the detailed 
nature of the hard probe. While it is not calculable in pQCD, f(q<<Q)  can be 
measured using a reference probe, and used elsewhere  

As a result, to study inclusive processes at large Q it is sufÞcient to consider 
the interactions between the external probe and a single parton:

1) xbefore ≠ xafter <zaffect f(x)!

2) for q≈1 GeV not  calculable in pQCD

Q

1) calculable in perturbative QCD (pQCD)
2) do not affect f(x): xbefore = xafter

q>Q

q

q<Q

This gluon cannot be 
reabsorbed because 
the quark is gone



Q dependence of 
parton densities

The larger is Q, the more gluons will not  have time to be reabsorbed

PDFÕs depend on Q!

f (x,Q) = f (x,µ) +
Z 1

x
dxin f (xin,µ)

Z Q

µ
dq2

Z 1

0
dyP(y,q2)δ(x�yxin)
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f (x,Q) = f (x,µ) +
Z 1

x
dxin f (xin,µ)

Z Q

µ
dq2

Z 1

0
dyP(y,q2)δ(x�yxin)

f(x,Q) should be independent of the intermediate scale μ considered:

d f (x,Q)
dµ2

= 0 !
d f (x,µ)
dµ2

=
Z 1

x

dy
y
f (y,µ)P(x/ y,µ2)

One can prove that: 

and Þnally (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi DGLAP equation):

P(x,Q2) =
! s

2"
1
Q2P(x)

calculable in pQCD

d f(x,µ)
d logµ2

=
! s

2"

Z 1

x

dy
y

f (y,µ)P(x/ y)



More in general, one should consider additional processes which lead to the 

evolution of partons at high Q (t=logQ2):

dq(x,Q)
dt

=
! s

2"

! 1

x

dy
y

!
q(y,Q)Pqq(

x
y
) + g(y,Q)Pqg(

x
y
)
"

dg(x,Q)
dt

=
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x
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◆

[g(x)]+ :
Z 1

0
dx f (x)g(x)+ ⌘

Z 1

0
[ f (x)� f (1)]g(x)dx
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Note: origin of logs

p

k

p-k

(p�k)2 = �2 p0 k0 (1� cosqpk)

Helicity 
conservation 
~ pá k

1/2 → 3/2

1/2 → -1/2

Soft 
divergence

Collinear 
divergence

|M|2⇠


1
(p�k)2

�2

⇥ (p·k) ! 1
p0

dk0

k0

d!
!



k 0 →0 <z x out  = x in

xoutx in

Soft emission cannot lead to a physical 
divergence, however, since it is not observable

The soft-emission divergence must cancel 
against the IR divergence of the virtual diagram

x in xout

The cancellation cannot take place in the case of 
collinear divergence, since xout ≠ x in , so virtual 
and real conÞgurations are not equivalent



Things are different if p0 →0. In this case, again, xout  ≠ x in  , no 
virtual-real cancellation takes place, and an extra singularity due 
to the 1/p 0 pole appears

These are called small-x logarithms. They give rise to the double-log 
growth of the number of gluons at small x  and large Q

p0 →0 <z 

xout →0

x in



Example: charm in the proton

g(x,Q)⇠ A/ xAssuming a typical behaviour of the gluon density:

c(x,Q) ⇠ αs
6π
log(

Q2

m2c
) g(x,Q)and therefore:

Corrections to this simple formula will arise due to the Q dependence of g(x) and of αs

dc(x,Q)
dt

=
αs
2π

Z 1

x

dy
y
g(x/y,Q)Pqg(y) =

αs
2π

Z 1

x
dy
A
x
1
2
[y2+(1� y)2] =

αs
6π

A
x

dc(x,Q)
dt

=
αs
2π

Z 1

x

dy
y
g(y,Q)Pqg(

x
y
)c

c
_

and using Pqg(x) =
1
2

!
x2+ ( 1� x)2

"
we get:
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Numerical example
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Excellent agreement, given the simplicity of the approximation!

Can be improved by tuning the argument of the log (threshold 
onset), including a better parameterization of g(x), etc....



General properties of the PDF evolution
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gn =
Z 1

0

dx

x

x
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df (n)
i

dt
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↵s

2⇡
[P (n)

qq f (n)
i + P (n)

qg f (n)
g ]

df (n)
g
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↵s

2⇡
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i ]
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!
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dV (n )
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=

↵s
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P (n )

qq V (n )

d! (n )
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=

! s

2"

h
P(n )

qq ! (n ) + 2nf P (n )
qg f (n )

g

i

df (n )
g

dt
=

! s

2"

!
P (n )

gq ! (n ) + P (n )
gg f (n )

g

"

DeÞnition of n-th moment:

In moment space, the evolution eqs become coupled linear differential equations

or, equivalently:

where we deÞne ÒsingletÓ and 
ÒvalenceÓ distributions as:

exercise!
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dV (1)

dt
! 0 "

! s

2"
P (1)

qq V (1) = 0

Pqq(z) !
✓

1 + z2

1 " z

◆

+

#
1 + z2

1 " z
" ! (1 " z)

Z 1

0
dy

✓
1 + y2

1 " y

◆

Z 1

0
dx f (x) [g(x)]+ !

Z 1

0
dx [f (x) " f (1)] g(x)

V

(1) =
Z 1

0
dx

X

q

(fq(x) ! fq̄(x)) = N(valence quarks) = constant

Valence sum rule

Z 1

0
dz Pqq(z) = 0

Subtraction of the 
virtual singularity

Since V(1)=3, we must have Pqq(1)=0, i.e.

This requires to modify Pqq(z) as follows:

Thus
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! 1

0
dx x

"

#
$

i, i

f i (x) + f g(x)

%

& ! ! (2) + f (2)
g = 1

Pgg ! 2CA

⇢
x

(1 " x)+
+

1 " x

x

+ x(1 " x)
�

+ �(1 " x)


11CA " 2nf

6

�

Momentum sum rule ( exercise )

P (2)
qq + P (2)

gq = 0

P (2)
gg + 2nf P (2)

qg = 0

This implies

(1)

(2)

(1) is trivially true (check!)

(2) requires a modiÞcation of Pgg to subtract soft virtual singularity (verify!):

Subtraction of 
quark loop in 
virtual diagrams

Subtraction of 
gluon loop in 
virtual diagrams



General solution of the PDF evolution
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V (n)
(Q2

) = V (n)
(µ2

)


log Q2/⇤

2

log µ2/⇤

2

�P (n)
qq /2⇡b0

= V (n)
(µ2

)


↵s(µ2

)

↵s(Q2
)

�P (n)
qq /2⇡b0

Verify that all moments Pqq(n) are negative. Therefore as Q grows, all moments decrease. 
The valence distribution becomes softer and softer.

For Σ(n) and g(n) one needs to diagonalize the 2x2 matrix. In the case of n=2, 
corresponding to the momentum fraction carried by gluons and quarks, simple 
asymptotic solutions (Q2→∞) can be obtained (exercise!):

P (2)
qq ⌃(2) + 2nf P (2)

qg f (2)
g = 0

⌃(2) + f (2)
g = 1

⌃(2) =
1

1 + 4CF
n f

f (2)
g =

4CF

4CF + nf

g(2)

! (2)
=

4CF

nf
=

16
3nf

(Σ(2) → constant at large Q)

(sum rule){

{

* see footnote next page

*



Footnote: αS running
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! s(µ2) =
1

b0 logµ2/ ⇤

2

d! s(µ2)
d logµ2

= " (! s)

�(↵s) = �b0↵
2
s (1 + b0↵s + . . .) b0 =

11CA � 2nf

12⇡

b0 =
17C2

A � 5CAnf � 3CF nf

2⇡(11CA � 2nf )

↵s(µ
2
) =

1

b0 log µ2/⇤

2


1� b0

b0

log log µ2/⇤

2

log µ2/⇤

2

�

At LO

At NLO

LO NLO

β(α) for QCD is known up to 
NNNLO (4-loops)



Note:
sea ≈10% glue

Note:
charm≈up at 
high Q

Examples of PDFs and their evolution

Valence up Sea up

Gluon All, at Q=1TeV
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