

Marcel Stanitzki Vertex 2015 Santa Fe, NM

Vertexing at the ILC Latest Developments from SiD and ILD

Higgs – What do we know ?

It all looks like the Standard Model Higgs Boson

Marcel Stanitzki

ATLAS EXPERIMENT

Probing new physics

Supersymmetry (MSSM) Composite Higgs (MCHM5)

ILC 250+550 LumiUP

Percent-level accuracy on Higgs Couplings essential !

The ILC Project

- The ILC (International Linear Collider)
 - A 500 GeV (baseline) GeV e+e- Linear Collider
 - Upgrade Path to 1 TeV
 - Polarization of both beams possible
 - Interaction Region with two detectors

Higgs physics at the ILC

- ILC will do everything the LHC/HL-LHC does
 - Couplings, Mass, Spin
- ILC does Modelindependent measurements
- Unique at the ILC
 - Total Higgs Width
 - H→cc/gg
- Higgs-Selfcoupling
 - ILC will establish its existence

Model-independent Measurement of $\sigma_{_{\text{HZ}}}$ at 250 GeV

ILC BR Measurements

Most couplings

- Approaching 1% accuracy
- Model-independent Fit
 - No assumptions made
- Accuracy on topcoupling
 - Improves with higher E_{CMS}

H→γγ

Benefits from 1 TeV Upgrade

ILC Interaction Region

ILC

- 1 Interaction Region
- 2 Detectors
- Push-Pull
 - Detectors mounted on movable platforms
 - Sharing of beam time
 - Switching time ~ 48 hours
 - Push-Pull allows
 - Complementarity
 - Cross-Checking of results

ILC Environment

ILC environment is very different compared to the LHC

- Bunch spacing of ~ 554 ns (baseline)
- 1312 bunches in 1 ms
- 199 ms quiet time

Occupancy dominated by beam background & noise

~ 1 hadronic Z (e⁺e⁻ \rightarrow Z \rightarrow qq) per train ...

- Readout during quiet time is possible
- Big Impact on detector design

From HL-LHC to ILC

Moving from 140 interactions per crossing to ~1 event/train

The PFA Approach

- PFA = Particle Flow Algorithms
- Combining all available reconstruction information
 - Momentum (Tracker),
 Energy (Calorimetry),
 Particle type (PID)
 - Typical ILC Jet :
 - 60 % charged particles, 30 % photons, 10% neutrals
- PFA is key to desired Jet Energy Resolution at the ILC

ILC Detectors

- PFA has been used at LEP, HERA and LHC
 - Novel Approach at the ILC
 - PFA drives design of the detector
 - Consequences
 - Calorimetry inside the Solenoid
 - Highly Granular Calorimetry
 - Low-mass tracking

• SiD

- r_{Tracker}=1.25 m
- B = 5 T
- All-silicon tracking

• ILD

- r_{Tracker}=1.8 m
- B = 3.5 T
- Time Projection Chamber

Two Tracking Approaches

- All-silicon Tracking
 - SiD's choice
- Tracking system
 - 5 layer pixel Vertex detector
 - 5 layer Silicon strip tracker
- Few highly precise hits
 - Max 12 hits
- Low material budget
- Concept proven by CMS

- Gaseous Tracking
 - ILD's choice
- Tracking System
 - 3 double layer Vertex detector
 - Intermediate silicon layersTPC
- Max number of hits
 228
- High hit redundancy
- Classical approach

Available Hits

Material Budget

- Ambitious Material budget goals
 - Entire Tracking < 20 % X_0
 - Vertex Detector layer $\sim 0.1 \% X_0$

Vertex Detector – SiD Design

Design

- 5 barrel layers
- 4 disk
- 3 forward disks
- Requirements
 - <3 µm hit resolution
 Pixel sizes of O(20 µm)
 ~ 0.1 % X₀ per layer
 - < 130 µW/mm²
 Single bunch timing resolution

Vertex Detector – ILD Design

Design

- 25cm long barrel
- No end caps
- Alternates:
 - 5 single layers
 - 3 double layers
- Requirements
 - Similar to SiD
 - Not fixed on singlebunch time stamping

- Target pixel size 5 μm x 5 μm
 - 6 μm x 6 μm achieved
- Readout during quiet time
- 50 μm thin silicon
- Operating at -40 C
- Recently studies of radiation hardness
 - Goal 1x10¹² neq/cm²

Position of 55Fe peak after irradiation

Mimosa Familiy

 Family of monolithic CMOS pixel sensors (Strasbourg)

- EUDET/AIDA telescopes
- STAR heavy-ion experiment at Brookhaven
- PLUME collaboration building $\sim 0.3\% X_0$ modules

 Double-sided: time-stamp/spatial-resolution sensors paired

DEPFFET

- Small pixels (~20µm) for excellent single point resolution (~3µm)
- Thin sensors with large S/N; minimize support, services, and cooling material
- Rolling shutter mode readout
 - take as many frames as possible to minimize occupancy!
 - goal is ~1/50µs frame rate, 1/50ns
 row rate (innermost layer)
- radiation tolerant up to ~1Mrad and ~10¹² n eq /cm² for 10 years operation (e - in the MeV range)
- Will have Lots of Experience from Belle-II Upgrade

3D Integration

The ultimate dream of any pixel designer

- Fully active sensor area
- Independent control of substrate materials for each of the tiers
 - Fabrication optimized by layer function
 - In-pixel data processing
 - Increased circuit density due to multiple tiers of electronics
- A new way of doing things

Conventional MAPS

3D Technologies

Component Technologies

- Through Silicon Vias (TSV)
- Bonding: Oxide-, polymer-, metal-, or adhesive , Wafer-Wafer, Chip-Wafer or Chip-Chip
- Wafer thinning
- Back-side processing: metalization and patterning
- Three Chips made by Fermilab
 - VIP(ILC), VICTR(CMS), and VIPIC(X-Ray)

VIP for ILC

Features

- 192 × 192 array of 24x24 μm^2 pixels
- 8 bit digital time stamp
- Readout between ILC bunch trains of sparsified data
- Analog signal output with CDS
- Analog information available for improved resolution
- Serial output bus
- Polarity switch for collection of e- or h+

On the Side...

New GPU's feature

- High-Bandwidth DRAM
- Interposers
- Enter Mainstream GPU market
 - AMD now
 - Nvidia in 2016
- It's all 3D Integration ..
 - No niche application anymore

Some Comments

The Vertex detector is technologically challenging

- Data rates, resolution, Mechanics, cooling
- Lots of things we learn from HL-LHC
- Number of channels is impressive
 - ~ 1.7 Gigapixels
- Area not so much (compared to LHC)
 - ~ 0.7 m²
- Both ILD and SiD plan for late technology decision, which is possible
 - Assembly time
 - "Vertex Detector last" approach
- What is late ?
 - ILC construction time is ~ ten years
 - Can be halfway down the road

Reconstruction Suite

Both concepts

- GEANT4-based simulation
- Full reconstruction (no cheating)
- Common EDM (LCIO)
- Full background simulation
 - e⁺e⁻ pairs
 - γγ→hadrons
- Recent developments
 - New MDI, new beam parameters
 - Studies will be re-done

DBD Vertexing Performance

- Vertex resolution is execellent
 - $< 4 \ \mu m$ in both xy an z

DBD Flavor Tagging

DBD Robustness vs. backgrounds • SID

 Performance of the Flavor tagging with full background simulation

– Minor impact on performance

New LC-Tracking Code

- New geometry system DD4hep
 - provides interface for reconstruction
- Tracking surfaces
 - attached to volumes in the detailed geometry model, provide: u,v,n,o, thicknesses and material properties (automatically averaged from detailed model)
- Generic interface allows for changing the track fitting model w/o changing the pattern recognition
 - tracking code can be fairly easily ported

Example: pull distributions in CLIC like all Si-tracker:

Further Flavor tagging improvements

Low-p_t tracking benefits vertex mass

- High B fields , low ω , fewer Si hits
- Time stamping essential to reduce multiplicity
- Adaptive Vertex fitting
 - Introduce weight of track k on Vertex n
 - Preliminary result: 4% more vertices reconstructed
- π⁰ finding
 - Improved separation of photon clusters: GARLIC
 - Association of π⁰ with vertex (improves Vertex mass)
 - Difficult, but looks promising

Vertex Mass using PID

Performance of the Flavor tagging with full background simulation

- Time Stamping becomes important in the presence of background
- Performance is almost fully recovered if the Timing information from the silicon strips (SIT) is used

Project Status

SEOCIEN

1007

ILC Site Selection

- Japan proposed two sites
 - Kitakami, Honshu
 "Northern Site"
 - Sefuri, Kyushu "Southern Site"
 - Expert Panel Review on Scientific merits of each site
 - Geology, Infrastructure
 Economic impact

ILC Site – Kitakami Mountains

Kitakami Mountains

ILC Detector and Machine experts Visit September 2014

MEXT Review

MEXT's Organization for Studying ILC based on Science Council of Japan's Recommendation

The way forward

Timeline of ILC Where we are now 1980's Project Start Design & Manufacturing Processes **OECD** Ministerial Statement 2004 Technology choice Site-related studies Discussions w/ Funding Agencies by scientists/civil engineers 2007 **Baseline Design** First Cost Estimate **Begin cooperation** 2008 Government/Industry/Academica Site studies by International R&D local groups **XFEL Experience Global Design Geological studies** Cost/Design Optimization **CERN/LHC** 2012 **Technical Higgs Discovery Domestic Site** Science Council 2013 **Design Report Evaluation** of Japan Report 2014 Government budget for project evaluation **Project reviews by MEXT start** 2015 Site-specific design Government reviews Site-specific design International collaboration Talks between governments Today Activities in Local area Setting regulations Environmental assessment Greenlight / Engineering design International Agreement Preparing construction **Establish International Laboratory** International Laboratory Construction (~9 yrs) Operation (~20 yrs)

Summary

• A Precision machine is necessary to complement the LHC

- ILC is the right machine to do this
- ILC Vertexing
 - Lots of activity- No technology decisions have been made
 - Site specific design has triggered a lot of new studies
 - Always open to new ideas
- Strong Japanese Interest in hosting the ILC
 - Kitakami Mountain Site proposed
 - Political Process has started
 - Tokyo Statement
- Thanks to
 - M. Demarteau, F. Gaede, J. Goldstein, R. Lipton, J. Strube, Y. Sugimoto, A. White

Why a Linear Accelerator

Basic Limitations e⁺e⁻ synchrotons

- Synchrotron radiation loss ~ E⁴/r
- Synchrotron cost ~ quadratically with Energy (B. Richter 1980)
 - E_{CMS}=~ 200 GeV as upper limit

• A Linear Accelerator offers a clear way to higher energy

- Not limited by synchrotron radiation
- Cost ~ linear with Energy
- Polarization of both beams
- "nano beamspot" allows detectors close to the IP → key for c-tagging

Simulating backgrounds

- Pair background
 - ~ 400k/ BX @ 1 TeV
 - Very forward
- $\gamma \gamma \rightarrow hadrons$
 - 4.1 events per BX @ 1 TeV
 - 1.7 events per BX at 500
 GeV
 - More central
- Overlays these over "physics events"

ILC Detector Requirements

 Exceptional precision& time stamping

- Single Bunch resolution
- Vertex detector
 - $< 4 \,\mu m$ precision
 - $\sigma_{r\phi} \approx 5 \mu m \oplus 10 \mu m/p \sin^{(\frac{3}{2})}(\theta)$ Tracker
- σ(1/p) ~ 2.5 × 10⁻⁵
 Calorimeter

$$-\frac{\sigma_{E_{Jet}}}{E_{Jet}} = 3 - 4\%, E_{Jet} > 100 GeV$$

Vertexing & Tracking Performance

- SiD tracking is integrated
 - Vertex and Tracker
 - 10 Hits/track coverage for almost entire polar angle
- Tracking system
 - Achieves desired $\Delta p_T/p_T$ resolution of 1.46 • 10⁻⁵
 - >99 % efficiency over most of the phase space

It is not just the luminosity

B_s Oscillations ALEPH (LEP) ~ 6 million Z's **SLD** ~ 300000 Z's Main advantage of SLD: Pixel Vertex detector - Much closer to the IP

