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+Higgs – What do we know ?Higgs – What do we know ?

It all looks like the Standard Model Higgs Boson
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+Probing new physicsProbing new physics

Percent-level accuracy on Higgs Couplings essential !Percent-level accuracy on Higgs Couplings essential !
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+The ILC ProjectThe ILC Project
● The ILC (International Linear Collider)

– A 500 GeV (baseline) GeV e+e- Linear Collider
– Upgrade Path to 1 TeV
– Polarization of both beams possible

● Interaction Region with two detectors



Marcel Stanitzki 5

+Higgs physics at the ILCHiggs physics at the ILC
● ILC will do everything the 

LHC/HL-LHC does
– Couplings, Mass, Spin

● ILC does Model-
independent 
measurements

● Unique at the ILC
– Total Higgs Width
– H→cc/gg

● Higgs-Selfcoupling
– ILC will establish its 

existence
Model-independent Measurement 
of σHZ at 250 GeV
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+ILC BR MeasurementsILC BR Measurements

● Most couplings
– Approaching 1% accuracy

● Model-independent Fit
– No assumptions made

● Accuracy on top-
coupling
– Improves with higher 

ECMS

● H→γγ
– Benefits from 

1 TeV Upgrade



Marcel Stanitzki 7

+

The ILC DetectorsThe ILC Detectors
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+ILC Interaction RegionILC Interaction Region

● ILC 
– 1 Interaction Region
– 2 Detectors

● Push-Pull
– Detectors mounted on 

movable platforms
– Sharing of beam time
– Switching time ~ 48 hours

● Push-Pull allows
– Complementarity  
– Cross-Checking of results



Marcel Stanitzki 9

+ILC EnvironmentILC Environment

● ILC environment is very different compared to the LHC
– Bunch spacing of ~ 554 ns (baseline)
– 1312 bunches in 1 ms
– 199 ms quiet time

● Occupancy dominated by beam background & noise
– ~ 1 hadronic Z  (e+e- → Z → qq ) per train ...

● Readout during quiet time is possible
● Big Impact on detector design

1312
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+From HL-LHC to ILCFrom HL-LHC to ILC

ATLAS
<μ>=140

ILC  tt event

Moving from 140 interactions per crossing to ~1 event/train 
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+The PFA ApproachThe PFA Approach
● PFA = Particle Flow 

Algorithms
● Combining all available 

reconstruction 
information
– Momentum (Tracker), 

Energy (Calorimetry), 
Particle type (PID)

– Typical ILC Jet :
● 60 % charged particles, 

30 % photons, 10% 
neutrals

● PFA is key to desired 
Jet Energy Resolution 
at the ILC

TrackTrack PhotonsPhotons

Neutral Neutral 
HadronHadron
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+ILC DetectorsILC Detectors

● PFA has been used at LEP, 
HERA and LHC

● Novel Approach at the ILC
– PFA drives design of the 

detector
● Consequences

– Calorimetry inside the 
Solenoid

– Highly Granular Calorimetry
– Low-mass tracking
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+SiD & ILDSiD & ILD

● ILD
▬ rTracker=1.8 m
▬ B = 3.5 T
▬ Time Projection Chamber

● SiD
▬ rTracker=1.25 m
▬ B = 5 T
▬ All-silicon tracking

SiD ILD
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+Two Tracking ApproachesTwo Tracking Approaches
● All-silicon Tracking 

▬ SiD's choice
● Tracking system

▬ 5 layer pixel Vertex 
detector

▬ 5 layer Silicon strip tracker
● Few highly precise hits

▬ Max 12 hits
● Low material budget 
● Concept proven by CMS

● Gaseous Tracking
▬ ILD's choice

● Tracking System
▬ 3 double layer Vertex 

detector
▬ Intermediate silicon layers
▬ TPC

● Max number of hits
▬ 228 

● High hit redundancy
● Classical approach
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+Available HitsAvailable Hits

SiD
ILD
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+Material BudgetMaterial Budget

SiD
ILD

● Ambitious Material budget goals
– Entire Tracking < 20 % X0

– Vertex Detector layer  ~ 0.1 % X0
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+Vertex Detector – SiD DesignVertex Detector – SiD Design

● Design
– 5 barrel layers 
– 4 disk
– 3 forward disks

● Requirements
– <3 µm hit resolution
– Pixel sizes of O(20 µm)
–  ~ 0.1 % X0 per layer

– < 130 µW/mm2

– Single bunch timing 
resolution
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+Vertex Detector – ILD DesignVertex Detector – ILD Design

● Design
– 25cm long barrel
– No end caps
– Alternates:

● 5 single layers
● 3 double layers

● Requirements
– Similar to SiD
– Not fixed on single-

bunch time stamping
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+Candidate TechnologiesCandidate Technologies
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+FPCCDFPCCD

● Target pixel size 5 μm x 5 
μm
– 6 μm x 6 μm achieved

● Readout during quiet 
time

● 50 μm thin silicon
● Operating at -40 C
● Recently studies of 

radiation hardness
– Goal 1x1012 neq/cm2

Position of 55Fe peak after 
irradiation
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+MAPSMAPS

3T

Original MAPSOriginal MAPS
CellCell

Deep sub-micronDeep sub-micron
Chronopix et.alChronopix et.al

HV-CMOSHV-CMOS
Several ...Several ...

HR-CMOSHR-CMOS
CHESSCHESS (n>3) T(n>3) T

CherwellCherwell

Deep p/n wellsDeep p/n wells
Mimosa et.al.Mimosa et.al.

SoI-MAPSSoI-MAPS
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+Mimosa FamiliyMimosa Familiy

● Family of monolithic CMOS pixel sensors 
(Strasbourg)
– EUDET/AIDA telescopes
– STAR heavy-ion experiment at Brookhaven

● PLUME collaboration building ~0.3% X0 modules
– Double-sided: time-stamp/spatial-resolution sensors 

paired
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+DEPFFETDEPFFET

● Small pixels (~20μm) for excellent 
single point resolution (~3μm)

● Thin sensors with large S/N; 
minimize support, services, and 
cooling material

● Rolling shutter mode readout
– take as many frames as possible to 

minimize occupancy!
–  goal is ~1/50μs frame rate, 1/50ns 

row rate (innermost layer)
● radiation tolerant up to ~1Mrad and 

~1012 n eq /cm2 for 10 years 
operation (e - in the MeV range)

● Will have Lots of Experience from 
Belle-II Upgrade
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+3D Integration3D Integration
● The ultimate dream of any 

pixel designer
– Fully active sensor area 
– Independent control of 

substrate materials for 
each of the tiers

– Fabrication optimized by 
layer function

– In-pixel data processing
– Increased circuit density 

due to multiple tiers of 
electronics

● A new way of doing things

Conventional MAPS

pixel

Addressing
A/D, CDS, …

A
dd
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ss
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g Diode

3T

3-D Pixel

pixel

Detector

ROIC

Processor
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+3D Technologies3D Technologies

● Component Technologies
– Through Silicon Vias (TSV)
– Bonding: Oxide-, polymer-, 

metal-, or adhesive , Wafer-
Wafer, Chip-Wafer or Chip-Chip

– Wafer thinning
– Back-side processing: 

metalization and patterning
● Three Chips made by 

Fermilab
– VIP(ILC), VICTR(CMS), and 

VIPIC(X-Ray)
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+VIP for ILC VIP for ILC 

● Features
– 192 × 192 array of 24x24 µm2 

pixels
– 8 bit digital time stamp
– Readout between ILC bunch 

trains of sparsified data
– Analog signal output with CDS
– Analog information available 

for improved resolution
– Serial output bus
– Polarity switch for collection 

of e- or h+
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+On the Side...On the Side...
● New GPU's feature

– High-Bandwidth DRAM
– Interposers

● Enter Mainstream GPU 
market
– AMD now
– Nvidia in 2016

● It's all 3D Integration ..
– No niche application 

anymore
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+Some CommentsSome Comments

● The Vertex detector is technologically challenging
– Data rates, resolution, Mechanics, cooling
– Lots of things we learn from HL-LHC

● Number of channels is impressive
– ~ 1.7 Gigapixels

● Area not so much (compared to LHC)
– ~ 0.7 m2

● Both ILD and SiD plan for late technology decision, which is possible
– Assembly time
– “Vertex Detector last” approach

● What is late ?
– ILC construction time is ~ ten years
– Can be halfway  down the road
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+Reconstruction SuiteReconstruction Suite

● Both concepts 
– GEANT4-based simulation
– Full reconstruction (no cheating)
– Common EDM (LCIO)

● Full background simulation 
– e+e- pairs
– γγ→hadrons

● Recent developments
– New MDI, new beam 

parameters
– Studies will be re-done
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+DBD Vertexing PerformanceDBD Vertexing Performance

SiD SiD

● Vertex resolution is execellent
– < 4 µm in both xy an z
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+DBD Flavor TaggingDBD Flavor Tagging

ILD ILD
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+DBD Robustness vs. backgroundsDBD Robustness vs. backgrounds

● Performance of the Flavor tagging with full background 
simulation
– Minor impact on performance

SiD SiD
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+New LC-Tracking Code New LC-Tracking Code 
● New geometry system DD4hep

– provides interface for reconstruction
● Tracking surfaces 

– attached to volumes in the detailed geometry model, 
provide: u,v,n,o, thicknesses and material properties 
(automatically averaged from detailed model)

● Generic interface allows for changing the track fitting 
model w/o changing the pattern recognition

– tracking code can be fairly easily ported 
● Example: pull distributions in CLIC like all Si-tracker:

ILD inner trackers
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+Further Flavor tagging improvementsFurther Flavor tagging improvements

● Low-pt tracking benefits vertex mass 
– High B fields , low ω,  fewer Si hits
– Time stamping essential to reduce 

multiplicity
● Adaptive Vertex fitting 

– Introduce weight of track k on Vertex n
– Preliminary result: 4% more vertices 

reconstructed
● π0 finding

– Improved separation of photon 
clusters: GARLIC

– Association of π0  with vertex 
(improves Vertex  mass)

– Difficult, but looks promising

VERTEX CLASSIFICATION
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π +π

K+π
Reco
Energy Correction 
PID is reversedstatus Inside outside

PID Correct(num. of vtx) 550 6940

PID reversed(num. of vtx) 83 77

Inversed PID is near
nominal D mass

22 77

mD=1.865± 0.009GeV/ c2

Can Particle ID be used for flavor tagging improvement?
Checking vertex mass distribution

Vertex is from LCFIPlus

How much effect on vertex mass?

Check D meson reconstruction
Track energy correction using PID

How much D meson mass is close to

PDG value(1.869± 0.0001GeV/ c2)?

How does wrong PID destroy D meson

mass?
mD=1.865± 3σ  is defined as D meson mass range

Vertex Mass using PIDVertex Mass using PID
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+Impact of Time StampingImpact of Time Stamping

● Performance of the Flavor tagging with full background simulation
– Time Stamping becomes important in the presence of background
– Performance is almost fully recovered if the Timing information from the 

silicon strips (SIT) is used
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+

ILC ILC 
Project StatusProject Status
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+ILC Site SelectionILC Site Selection

● Japan proposed two 
sites
– Kitakami, Honshu

“Northern Site”
– Sefuri, Kyushu

“Southern Site”
● Expert Panel Review on 

Scientific merits of each 
site
– Geology, Infrastructure
– Economic impact
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+

Oshu

Ichinoseki

Ofunato

Kesen-numa

IP: (underground) candidate Location :  
Proposed by JHEP community
Endorsed by LCC
Not decided by Japanese Government

Sendai

Express-
Rail

High-way

IP Region

ILC Site – Kitakami MountainsILC Site – Kitakami Mountains
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+Kitakami MountainsKitakami Mountains

ILC Detector and Machine experts VisitILC Detector and Machine experts Visit
September 2014September 2014
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+MEXT ReviewMEXT Review
MEXT’s Organization for Studying ILCMEXT’s Organization for Studying ILC

  based on Science Council of Japan's Recommendationbased on Science Council of Japan's Recommendation

MEXT

Particle & Nuclear Phys. 
Working Group
formed in 2014  

TDR Verification 
Working Group
formed in 2014   

 SCJ  
  ILC Taskforce

formed in 2013 

Academic Experts Committee
formed in 2014 

Recommendation in 2013
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+The way forwardThe way forward
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+SummarySummary

● A Precision machine is necessary to complement the LHC
– ILC is the right machine to do this

● ILC Vertexing
– Lots of activity- No technology decisions have been made
– Site specific design has triggered a lot of new studies
– Always open to new ideas 

● Strong Japanese Interest in hosting the ILC
– Kitakami Mountain Site proposed
– Political Process has started
– Tokyo Statement

● Thanks to
– M. Demarteau, F. Gaede, J. Goldstein, R. Lipton, J. Strube, Y. Sugimoto, A. White

http://www-conf.kek.jp/alcw2015/Tokyo_Statement.html
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+Why a Linear AcceleratorWhy a Linear Accelerator

● Basic Limitations e+e- synchrotons
– Synchrotron radiation loss ~ E4/r
– Synchrotron cost ~ quadratically with Energy (B. Richter 

1980) 
● ECMS=~ 200 GeV as upper limit

● A Linear Accelerator offers a clear way to higher energy
– Not limited by synchrotron radiation
– Cost ~ linear with Energy
– Polarization of both beams
– “nano beamspot” allows  detectors close to the IP → key for 

c-tagging
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+Simulating backgroundsSimulating backgrounds
● Pair background

– ~ 400k/ BX @ 1 TeV
– Very forward

● γγ → hadrons
– 4.1 events per BX @ 1 TeV

– 1.7 events per BX at 500 
GeV

– More central

● Overlays these over 
“physics events”
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+ILC Detector RequirementsILC Detector Requirements
● Exceptional precision& time 

stamping
– Single Bunch resolution

● Vertex detector
– < 4 µm precision
–

● Tracker
– σ(1/p) ~ 2.5 × 10-5

● Calorimeter

–    
σE Jet

E Jet
=3−4 % , E Jet>100 GeV

σrϕ≈5 μm ⊕ 10 μm / p sin
(
3
2
)

(θ)

ZH → μ+μ- + anything

primary vertices in tth events

250 GeV

ILC 1 TeVILC 1 TeV

W-Z separation
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+Vertexing & Tracking PerformanceVertexing & Tracking Performance

● SiD tracking is integrated
– Vertex and Tracker
– 10 Hits/track coverage for 

almost entire polar angle
● Tracking system 

– Achieves desired ΔpT/pT 

resolution of 1.46 ·10-5

– >99 % efficiency over most 
of the phase space
 

σ( pT )

pT
2

=a ⊕
b

p sin θ

Pointing 
resolution

Multiple
scattering
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+It is not just the luminosityIt is not just the luminosity

● Bs Oscillations
● ALEPH (LEP)

–  ~ 6 million Z's
● SLD

– ~ 300000 Z's
● Main advantage of SLD:

– Pixel Vertex detector
– Much closer to the IP
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