Upgrade of the Inner Tracking System of ALICE with a focus on pixel sensor development

Monika Kofarago

on behalf of the ALICE Collaboration

1st June 2015 24th International Workshop on Vertex Detectors

A Large Ion Collider Experiment (ALICE)

Talk by Domenico Colella on the current ITS on Monday morning

Monika Kofarago

Upgrade of ALICE in the 2nd LHC long shutdown (2018/19)

ALICE

Motivations and strategy:

- ALICE was designed to study the **quark-gluon plasma** formed in heavy ion collisions
- High precision measurements of rare probes at low p_T
 - cannot be selected by a hardware trigger
- Record large minimum bias samples
 - read out all collisions at the maximum LHC collision rate (50 kHz)
- Integrated luminosity of 10 nb⁻¹ in Pb-Pb (plus pp and p-A data)
 - factor 100 in statistics compared to LHC Run 1 and 2 (2009 2018)

Upgrade of ALICE in the 2nd LHC long shutdown (2018/19)

ALICE

Motivations and strategy:

- ALICE was designed to study the **quark-gluon plasma** formed in heavy ion collisions
- High precision measurements of rare probes at low p_T
 - cannot be selected by a hardware trigger
- Record large minimum bias samples
 - read out all collisions at the maximum LHC collision rate (50 kHz)
- Integrated luminosity of 10 nb⁻¹ in Pb-Pb (plus pp and p-A data)
 - factor 100 in statistics compared to LHC Run 1 and 2 (2009 2018)

Upgrades:

- New Inner Tracking System (ITS)
- New Muon Forward Tracker (MFT)
- Smaller beam pipe
- Online and offline system

- Electronics and readout of the Time-Projection Chamber (TPC)
- Readout electronics of several detectors

Design objectives for the upgrade of the ITS

- Improve impact parameter resolution by a factor of 3(5) in r- φ (z) at $p_T = 500 \text{ MeV/c}$
 - \bullet First layer closer to interaction point: 39 mm \rightarrow 23 mm
 - $\bullet\,$ Material budget: $\sim 1.14\%$ $X_0 \rightarrow 0.3\%$ X_0 for the three innermost layers
 - Pixel size: $50\mu m \times 425\mu m \rightarrow O(30\mu m \times 30\mu m)$
- Improve tracking efficiency and p_{T} resolution at low p_{T}
 - 6 layers \rightarrow 7 layers
 - All layers pixel chips (instead of strip, drift and pixel layers)
- Fast readout (now limited to 1 kHz with full ITS)
 - Pb-Pb: > 100 kHz
 - pp: several 10⁵ Hz
- Fast insertion/removal for yearly maintenance

CERN-LHCC-2013-24 J Phys. G(41) 087002

ALTCE

Requirements for the upgrade of the ITS

- 7 layers of pixel sensors
 (r = 23 400 mm)
- $\bullet~10~m^2$ of silicon with 12.5 Gpixels
- $|\eta| < 1.22$ for tracks from 90% of the most luminous region

	Outer barrel	
50µm		
5µm	10µm	
$< 300 \text{ mW/cm}^2$	$< 100 \ \mathrm{mW/cm^2}$	
< 30µ	LS	
> 99%		
$< 10^{-5}$ per event per pixel		
15 - 35 cm ⁻²	$0.1 - 1 \text{ cm}^{-2}$	
2700 krad	100 krad	
1.7×10^{13} 1 MeV n_{eq}/cm^2	10^{12} 1 MeV n_{eq}/cm^2	
	$\begin{tabular}{ c c c c c c c } & 50 \mbox{ m} & 50 \mbox{ m} & 50 \mbox{ m} & & & & & & & \\ & & 5 \mbox{ m} & & & & & & & & \\ & & & & & & & & & & $	

* Including a safety factor of 10

Monika Kofarago

Technology choice

Monolithic Active Pixel Sensors using TowerJazz $0.18 \mu m$ CMOS imaging process

- $\bullet\,$ High-resistivity (> 1k\Omega cm) epitaxial layer on p-type substrate
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area
- Moderate reverse substrate biasing is possible, resulting in larger depletion volume around NWELL collection diode

Chip architectures

- Readout: Data driven
- Pixel pitch: $28\mu m \times 28\mu m$
- Event time resolution: $\leq 2 \mu s$
- Power consumption: 39 mW/cm²
- Dead area: 1.1 mm x 30 mm
- Baseline solution is the ALPIDE
- Both chips have the same dimensions, identical physical and electrical interfaces

Monika Kofarago

- Rolling shutter
- 36μm x 65μm
- $\bullet \sim 20 \mu s$
- $80 90 \text{ mW/cm}^2$
- 1.5 mm x 30 mm

Stages of the ALPIDE development

Existing ALPIDE chip types:

2012	Explorer-0	 Explorer and Investigator: Analog chip to study pixel geometry,
2013	Explorer-1 pALPIDEss-0	starting material and sensitivity to radiation
2014 May	pALPIDE-1 pALPIDEss-1 Investigator	 pALPIDEss: Small scale digital chip to study the priority encoder and the front-end electronics
2015 April	pALPIDE-2	 pALPIDE-1: Full scale chip to study system effects
2015 August	pALPIDE-3	 pALPIDE-2: Full scale chip which supports integration
2016 February	ALPIDE	into module prototypes: New pad over logic geometry and support of Outer Barrel local data bus

Specification of the pALPIDE-1

- First prototype with final size (15 mm x 30 mm)
- 512 x 1024 pixels
- Pixels are 28μm x 28μm
- Digital readout with priority encoder
- Four sectors with different pixel layouts

Sector	Nwell diameter	Spacing	Pwell opening	Reset
0	2μm	1μm	4µm	PMOS
1	2μm	2µm	бμт	PMOS
2	2µm	2µm	бµт	Diode
3	2µm	4µm	10µm	PMOS

Characterization methods - laboratory

- Noise and threshold measurements
- Radioactive source measurements
- Noise occupancy measurements
- Several setups:

CERN, France, Italy, Russia, South Korea, Thailand

ALICE

Input charge threshold measurements

$$V_{BB} = -3 \text{ V}$$

Sector 2

- Input charge threshold increases as function of I_{thr}
- Threshold spread between pixels: 20 50 electrons
- Results are from one sector \longrightarrow fourth of the final chip size

Characterization methods - test beam

Test beam

- Tracking is done by a stack of 7 layers of pALPIDE-1
- Readout and analysis is done using the EUDAQ/EUTelescope framework *
- Several campaigns from 60 MeV to 120 GeV (PS, SPS, DESY, BTF, PAL)
- Measurement of detection efficiency and spatial resolution

*https://eutelescope.web.cern.ch

100

99.8

99.7

99.6

99.5

10

Efficiency

15

Efficiency (%) 99.9

I_{thr} (DAC unit)

$$V_{BB} = -3 V$$

Sector 2
W9-16, W5-25

• Wide operating range with efficiency above 99% and noise occupancy below 10^{-5} /event/pixel

• Slight increase in noise occupancy after irradiation Upgrade of the Inner Tracking System of ALICE - VERTEX 2015

• 20 most noisy pixels masked

13 / 21

$$V_{BB} = -3 V$$

Sector 2
W2-31, W2-12

Wide operating range with resolution below 5μm
Resolution becomes slightly worse after irradiation

Dependency of cluster size on track impinging point

$$V_{BB} = 0 V$$

Sector 2
W2-25

Monika Kofarago

ALICE

Dependency of cluster size on track impinging point

• Clusters size changes with track impinging point as expected from charge sharing

$$V_{BB} = 0 V$$

Sector 2
W2-25

MISTRAL development

MISTRAL FSBB

- First Full Scale Building Block (FSBB)
- Sensitive area: 13.7 \times 9.2mm 2 (\sim third of the final chip size)
- \bullet Staggered pixels of $22\times 33 \mu m^2$
- In-pixel pre-amplification and clamping with 6 metal layers
- 416 \times 416 of Columns x Row of pixels ended by discriminator (8-cols with analogue output)
- Double-row readout at 160 MHz clock frequency resulting in 40µs integration time
- MISTRAL-Ö Being optimized for
 - Being optimized for the outer layers
 - $\bullet\,$ Target requirements on the spatial resolution: $\sim 10 \mu m$
 - $\bullet~Target~requirements$ on power consumption: $< 100 mW/cm^2$
 - \bullet Staggered pixels of 36 \times 65 μm^2
 - 20μs integration time

Monika Kofarago

Performance of the MISTRAL FSBB

- \bullet Large operational margin: 5.0 mV \leq Thr \leq 8.0 mV
- Fake hit rate averaged over 11 sensors
- Fake hit rate drops by O(10) by masking the 20 noisiest pixel
- $\bullet\,$ Tracking resolution is (4.7 $\pm\,0.1)\mu m$ (U) and (4.9 $\pm\,0.1)\mu m$ (V) at Thr= 6 mV

Monika Kofarago

Upgrade of the Inner Tracking System of ALICE - VERTEX 2015

ALICE

Other aspects of the project

ALICE

- Inner barrel prototypes and testing
- Outer barrel prototypes and testing
- Cooling
- Assembly machine
- Readout electronics
- Sensor post processing
- Chip transport
- Laser soldering
- Mass testing

Inner barrel

Inner barrel stave prototypes

- $\bullet\,$ Material budget: $\sim 0.3\%~X_0$
- Detector operated at room temperature
- Coolant: H₂O
- Chips are laser soldered to FLEX printed circuit

Outer barrel

Stave design

Outer half barrel

- Material budget: $\sim 1\% X_0$ ۲
- Two half staves grouped into one stave

- The Inner Tracking System of ALICE will be replaced during the second long shut down of the LHC (2018/19)
- Impact parameter and tracking resolution and p_T resolution at low p_T will improve significantly
- 7 layers of monolithic pixel sensors will be used
- First full scale prototypes show good performance and large margin of operation
- All aspects of the R&D are close to completion and all specifications are possible to meet
- Project is advancing according to schedule

Thank you for your attention!

BACKUP

Starting material - epi-layer thickness

 $20 \times 20 \ \mu m^2$ pixels:

- Cluster charge increases linearly with epi-layer thickness
- Cluster size increases with epi-layer thickness
- Optimum epi-layer thickness depends on the applied reverse substrate bias

Starting material - resistivity

NWELL diode output signal = Q/C

- Minimize spread of charge over many pixels
- Minimize capacitance:
 - Small diode surface
 - Large depletion volume

- Pixel input capacitance decreases with increasing reverse substrate bias
- Minor influence of epi-layer resistivity for current pixel layout

Effects of irradiation on the different sectors of the pALPIDE-1

Effect of reset method

- Sector 1: PMOS reset
- Sector 2: Diode reset

Effect of spacing

- Sector 1: 2μm
- Sector 3: 4µm

- Diode reset seems to show better performance before and after irradiation
- $V_{BB} = -3 V$ W2-31, W2-12
- Diode reset seems to be more effected by irradiation
- Larger spacing seems beneficial

Monika Kofarago

Readout

Backup

Inner layers:

• 9 independent sensors (each reads/drives its own data line)

Mid/outer layers:

- 2 symmetric group of 1 master and 6 slave chips
- Only the master accesses the data/control lines

Laser soldering

- Interconnection of pixel chip with flexible printed circuit
- Both mechanical and electrical connection

ALICE

Cooling

Plans for mass testing

Monika Kofarago

Chip transport

- \bullet Assembly will take place in many parts of the word \longrightarrow safe transport method needed
- Transport test from CERN to Pusan (South Korea) and back
- Visual inspection in both places
- Measurement of temperature, acceleration and humidity during the trip
- $\bullet\,$ Chips are back to CERN \longrightarrow No visual damage

Service barrel

Installation

Physics simulations

Tracking efficiency (ITS standalone)

Muon Forward Tracker - goal

- Study QGP physics at forward rapidity in ALICE
- Vertexing for the ALICE Muon Spectrometer (MS) at forward rapidity

Muon Forward Tracker - specifications

- \bullet 5 detection disks of silicon pixel sensors O(25 μm x 25 $\mu m)$
- 0.6% of X₀ per disk
- \bullet TID < 400 krad, NEIL $< 6 \times 10^{12}$ 1 MeV n_{eq}/cm^2 (safety factor of 10)

- Disk 0 at z = -460 mm, $R_{in} = 25$ mm (limited by the beam-pipe radius)
- Disk 4 at z = -768 mm (limited by FIT and the frontal absorber)

