

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

GOETHE

JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Monolithic Active Pixel Sensors

M. Deveaux, Goethe University Frankfurt and CBM (CPS / MIMOSA – family)

MAPS: The operation principle

Performances of MAPS

Generations of CMOS-processes

Generation 1: Twin-Well

- NMOS only
- Charge collection by diffusion

N-Well

P-Well

 $\sim 1 \mathrm{k}\Omega \cdot cm$

M. Deveaux, Vertex 2015, Santa Fe, 01 – 05 June 2015

M. Deveaux, Vertex 2015, Santa Fe, 01 – 05 June 2015

Drift fields in undepleted MAPS (Observation 2010)

MIMOSA-26 (AMS 0.35) illuminated with ⁵⁵Fe

- Depleted volume not significantly changed.
- CCE and radiation hardness improved.
- \Rightarrow "Unknown beneficial effect"

Drift fields in undepleted MAPS

Back of the envelope calculation:

- Doping gradients create sizable drift fields in epi-layer.
- Electrons reach potential minimum in << 10 ns by drift.

Drift fields in undepleted MAPS

- Vertical movement guided by fields over full depth.
- Lateral movement constrained by fields.

Depletion is not needed to apply fields.

Established knowledge on radiation tolerance

<u>≤</u>

Deveaux, D.

Linnik, S. Strohauer, CBM/IKF Frankfurt

Sensors: IPHC

Applications of MAPS

ILC

CBM - MVD

STAR HFT ALICE ITS upgrade

EUDet Telescope NA61 SAVD

M. Deveaux, Vertex 2015, Santa Fe, 01 - 05 June 2015

From STAR to ALICE

Introduction to project: Monika Kofarago's talk

	STAR-PXL	ALICE ITS Outer	ALICE ITS Inner
Spat. Res. [µm]	<4µm	<10µm	<5µm
R.O. time [µs]	<200 µs 🗖	→ < 30 µs	< 30µs
Dose [kRad]	150 kRad	100 kRad	→ 2.7 MRad
Fluency $\left[\frac{n_{eq}}{cm^2}\right]$	$3\cdot 10^{12}$	$1 \cdot 10^{12}$ —	$\rightarrow 1.7 \cdot 10^{13}$
T [°C]	30-35	30	30
Power $\left[\frac{mW}{cm^2}\right]$	160 -	<100	<300
Area [m ²]	0.15	10	0.17

Toward Sensors for the ITS => Exploit 0.18µm (Gen 2)

Going MISTRAL: The FSBB-M0

M. Deveaux, Vertex 2015, Santa Fe, 01 – 05 June 2015

Detection performances of the FSBB

CERN-SPS, 120 GeV/c $\pi^- + \mu^-$, 2.5 – 100kHz trigger rate

Excellent performance: Detection efficiency: $\epsilon_{det} > 99\%$ @ dark rate < 10^{-5} Spatial resolution $\sigma_{sp} < 5\mu m$

Spatial resolution vs. cluster size

Spatial resolution mostly independent of # pixels / cluster.

Conclusion from results of FSBB:

- Sensor matches ALICE ITS requirements.
- Still needed:
 - More speed, bigger pixels
 - Adapt to ALICE integration concept

Toward bigger pixels – M22THR (b5-b8)

On chip:

Pixels + Discriminator

Pixel pitch:

• 36x62.5µm² and 39x50.8µm²

Pixel diodes:

• 2.2 / 4.8 / 7.4 / 14.8 μm^2

Various options of pre-amplifyers Various clamping capacitors

Bonding pads WITHIN the pixel matrix (using ML5 and ML6)

=> Beam test at LNF/BTF (500 MeV electrons)

Toward bigger pixels – M22THR (b5-b8)

Performances match requirements for ALICE-ITS outer layer. Next steps:

- Check radiation tolerance (once more, relaxed requirements)
- Build final prototype sensor (MISTRAL-O = 3x FSBB)

Tolerance to bulk damage

Looks promising (note: 10 x ITS outer layer requirement):

To be confirmed: T= +30°C, smaller depletion voltage (0.7V instead of 1.3V).

Seems better than new MIMOSA-26 with LR epitaxial layer (EU-Det).

From FSBB to MISTRAL – O, final prototype

Area: 13.5 x 29.95 mm² Pixels: 832 colls x 208 pixels Pixel pitch: 36 x 65 μ m² => ~10 μ m resolution

Int. time: 20.8µs Data link: 320 Mbps

Integrated:

- Slow control ALICE-ITS style
- Voltage generation
- Data concentrator (multiplexes data from other sensors).

Epi-layers:

- 5 layers
- 18-30 µm thick
- 1 8 kOhm cm

Submission: End of July 2015 Test: Until Q1 2016

M. Deveaux, Vertex 2015, Santa Fe, 01 - 05 June 2015

Outlook: CBM@SIS100

Mission:

Open charm from 30 GeV p-A (10 MHz), Low momentum tracker for 1-12 AGeV A-A (30-100 kHz)

Beam on target: 2021 (estimate from May 2015)

Sensor properties	MISTRAL - O	MIMOSIS-100 (preliminary)
Active surface	13.5 x 29.95 mm ²	~ 10 x 30 mm²
Pixels	832 colls x 208 pixels	~ 1500 colls x 300 pixels
Pixel pitch	36 x 65 µm² 🛛 🛁	22x33 μm ²
Integration time	20.8 µs	30 µs
Data rate	320 Mbps	> 6x 320 Mbps
Rad tol. (non-io)	>10 ¹² n _{eq} /cm²	>3 x 10 ¹³ n _{eq} /cm ²
Rad tol (io)	> 100 kRad	> 3 MRad
Operation Temperature	+30°C	-20°C in vacuum

In reach of slightly modified FSBB

Toward ILC: IBISCUS

ILC Bunch Identifying Sensor Compatible with Ultraprecise Spatial resolution

See Marcel Stanitzki's talk

Challenge:

- Combine 1ms time resolution with 3µm spatial resolution (track seeding in VTX).
- Needs small pixels, too small for ALPIDE in-pixel logic in 0.18µm.
- Idea: Move time stamping to the border of the matrix:
- Discriminate on pixel.
- Connect ~ 2k pixels with token ring (expect some 100ns per scan).
- Add address of fired pixels to token.
- Accumulate data for 1ms into buffer outside pixel matrix.
- Create time stamp for data in this buffer.

Status:

- So far a concept.
- Design being started.

Toward ILC: IBISCUS

ILC Bunch Identifying Sensor Compatible with Ultraprecise Spatial resolution

See Marcel Stanitzki's talk

Challenge:

- Combine 1ms time resolution with 3µm spatial resolution (track seeding in VTX).
- Needs small pixels, too small for ALPIDE in-pixel logic in 0.18µm.
- Idea: Move time stamping to the border of the matrix:
- Discriminate on pixel.
- Connect ~ 2k pixels with token ring (expect some 100ns per scan).
- Add address of fired pixels to token.
- Accumulate data for 1ms into buffer outside pixel matrix.
- Create time stamp for data in this buffer.

Status:

- So far a concept.
- Design being started.

Summary and Conclusion

Substantial experience has been collected with running STAR-PXL to prove that MAPS provide added value to physics.

New CMOS sensor technology was validated (Tower 0.18µm)

- Close to fully expoit the potential of the CPS technology
- Expected to provide 1-2 orders of magnitude in performances as compared to STAR-PXL
- Allows to integrate a fast signal processing electronics in small pixels as needed for applications *requirering* fast readout.
- Allows for low power and opens the possibility to equip sizable trackers.
- Expect prototype for ALICE-ITS (MISTRAL-O) tested until Q1 2016.

Next step: Adressing the requirements of CBM (high collision rate and vacuum), long term goal ILC vertexing with 1μ s integration time + 3μ m precision (track seeding, bunch tagging).

"MAPS collect their signal charge by thermal diffusion."