
o

Recent developments in
tracking and vertexing methods

R. Frühwirth1,2

1Institute of High Energy Physics
Austrian Academy of Sciences

2Institute of Statistics and Mathematical Methods in Economics
TU Wien

Vertex 2015

Santa Fe, June 4, 2015

R. Frühwirth, HEPHY Vienna 1 Vertex 2015



Outline

1 Developments for LHC Run 2
ATLAS
CMS
LHCB

2 Real-time Tracking
ATLAS
CMS
CBM
LHCb

3 Other developments
CMS @ HL-LHC
Belle II
Fuzzy c-regression

4 Summary and outlook

R. Frühwirth, HEPHY Vienna 2 Vertex 2015



Outline

1 Developments for LHC Run 2
ATLAS
CMS
LHCB

2 Real-time Tracking

3 Other developments

4 Summary and outlook

R. Frühwirth, HEPHY Vienna 3 Vertex 2015



Outline

1 Developments for LHC Run 2
ATLAS
CMS
LHCB

2 Real-time Tracking

3 Other developments

4 Summary and outlook

R. Frühwirth, HEPHY Vienna 4 Vertex 2015



Developments for LHC Run 2: ATLAS Tracking

ý See talk by Gabriel Facini!
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Developments for LHC Run 2: ATLAS Vertexing

ý Imaging algorithm for vertex reconstruction

Define 3D histogram in box 4× 4× 400 mm around the origin
Helical track trajectories are linearised and back-projected into the
histogram using a voxel raytracing algorithm
Histogram content in each traversed bin is incremented by the path
length of the linearised track in the bin
Example:
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(a) Track backprojection
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Simulation  = 13 TeVs
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(b) Reconstructed image

Figure 1: Illustration of the image reconstruction of part of a single simulated tt̄ event using POWHEG and PY-
THIA6, including pile-up, centred on the bin with the largest content in the reconstructed 3D histogram image.
Slices are made through this peak in the zy and xy planes (at x = 15 and z = 0), and the axes are labeled both
with the actual bin numbers used in the algorithm and the corresponding spatial extents. The results of the track
back-projection step are shown in Figure 1a; the bin content represents the sum of track path lengths in each bin.
In Figure 1b the full reconstructed image after Fourier transformation into frequency space, filtering, and back
transformation is shown; this histogram is used as input to image processing algorithms to identify likely vertex
locations that appear as peaks in the image. In addition to the interaction resulting in the highest peak (centred at
z = 0), several other interactions are visible in the reconstructed image.
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Developments for LHC Run 2: ATLAS Vertexing

The back-projected track image is transformed into frequency space
by a discrete Fourier transform
The frequency space histogram is multiplied by two filters:
acceptance and smoothing
The filtered frequency space image is back-transformed to position
space
Result:
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(b) Reconstructed image

Figure 1: Illustration of the image reconstruction of part of a single simulated tt̄ event using POWHEG and PY-
THIA6, including pile-up, centred on the bin with the largest content in the reconstructed 3D histogram image.
Slices are made through this peak in the zy and xy planes (at x = 15 and z = 0), and the axes are labeled both
with the actual bin numbers used in the algorithm and the corresponding spatial extents. The results of the track
back-projection step are shown in Figure 1a; the bin content represents the sum of track path lengths in each bin.
In Figure 1b the full reconstructed image after Fourier transformation into frequency space, filtering, and back
transformation is shown; this histogram is used as input to image processing algorithms to identify likely vertex
locations that appear as peaks in the image. In addition to the interaction resulting in the highest peak (centred at
z = 0), several other interactions are visible in the reconstructed image.
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Developments for LHC Run 2: ATLAS Vertexing

The resulting image is passed to a separate clustering algorithm
where all seeds are identified from peaks in the image
Projection to the z-axis:

algorithm in the future to improve performance. The projection algorithm was chosen for a first pass
because the magnitude of the track position uncertainties is large compared to the beam spot size and it
is difficult to separate vertices in the x and y directions in the image. The three-dimensional vertex image
is therefore projected onto the z-axis; a view of the same event as in Figure 1 with a larger z-range is
pictured in Figure 2. To identify seeds in this projection, all local maxima above a configurable threshold
are found. The lower of two peaks is eliminated if the minimum value between it and the other peak is
greater than 90% of its value. The resulting set of vertex seeds is then used to perform the vertex finding
and fitting.

The main difference with respect to the vertex finding for the iterative algorithm, is that the imaging
algorithm produces all seeds simultaneously instead of one-by-one. This allows each track to be assigned
to the closest seed to its trajectory. Each resulting group of tracks is then fit with the same adaptive fitting
algorithm. So if, for example, two close-by vertices produce two seeds, both are likely to have some
tracks assigned to them and two final reconstructed vertices can be found.
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Figure 2: Image of a portion of a simulated event (the same tt̄ event imaged in Figure 1), after performing the full
image reconstruction including transforms and filtering and then projecting onto the z-direction. The z-bin numbers
have been changed from relative to absolute numbering; the peak at z = 0 in Figure 1 corresponds to the one at
z ≈ 920. To avoid noise at large values of x and y, only bins within a 1σ box in xy are used in the projection. Using
the full image, the standard deviation in x and y is calculated – its width is driven by the smearing of the method
rather than the width of the true vertex distribution. To illustrate seeding, a simple clustering method using local
maxima is shown. Overlayed is a line corresponding to the threshold required for considered maxima, as well as
the locations of vertex seeds found. In this example, local maxima for which the highest adjacent local minimum is
at least 90% of the maximum height are discarded.

3 Performance studies

A comparison of the performance of the imaging algorithm with the iterative one for single interactions
(no additional pile-up in the event) is found in Table 1. For single interactions, the most important
metrics are the overall efficiency (was a vertex reconstructed at all for an event), and the split rate (in
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Developments for LHC Run 2: ATLAS Vertexing

Comparison to iterative reconstruction with the adaptive vertex finder
Min bias events, µ is number of in-time pile-up

µ
0 5 10 15 20 25 30 35 40 45

R
ec

on
st

ru
ct

ed
 v

er
tic

es

0

5

10

15

20

25

Img. z-bins 2048
Img. z-bins 1024
Iterative

ATLAS Preliminary
Simulation

 = 13 TeVs

 = 0.73, m = 0.008ε

 = 0.78, m = 0.005ε

 = 0.71, m = 0.007ε

Figure 4: Comparison of the number of reconstructed vertices as a function of the number in-time pile-up collisions,
µ, for PYTHIA8 minimum bias events. The iterative algorithm is compared to the imaging algorithm using both
1024 and 2048 z-bin setups. The number of reconstructed vertices, Nvtx is parameterised with a linear term ε,
multiplied by a quadratic loss term m: N reco

vtx = c0 + εµ (1 − mµ).

8

µ
0 5 10 15 20 25 30 35 40

S
ee

di
ng

 ti
m

e 
[m

s/
ev

en
t]

0

2

4

6

8

10

12

14

16

18

Iterative

Img. z-bins 2048

ATLAS Preliminary
Simulation

 = 13 TeVs

Figure 5: Comparison of the time spent creating vertex seeds in each PYTHIA8 minimum bias event as a function
of µ, as measured on a machine with a HEPSPEC scaling factor of about 13. This does not include the time spent
assigning tracks to each seed or performing the final vertex fit. The imaging algorithm time is dominated by the
time spent transforming and filtering to reconstruct the image, and shows a weaker dependence on the number of
in-time pile-up events from the other steps of the algorithm. The total time spent reconstructing vertices, excluding
seeding, ranges from < 1 ms at µ = 0 to ≈ 50 ms at µ = 40.
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Developments for LHC Run 2: CMS Tracking

The CMS Tracker
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Developments for LHC Run 2: CMS Tracking

ý Iterative combinatorial track finding

In each iteration:
Seed generation: initial track segment with 2 or 3 hits
Track following: pick up compatible hits and branch
Track fitting: estimate track parameters
Track selection: drop bad track candidates

After each iteration, hits belonging to high quality tracks are removed

Seeding Following Fitting/Smoothing

E. Brondolin, Connecting The Dots 2015
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Developments for LHC Run 2: CMS Tracking

E. Brondolin, Connecting The Dots 2015
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Developments for LHC Run 2: CMS Tracking

ý New seeding algorithm

For triplet-based seeding from strips
Straight-line fit of 3 points in r–z plane, tighter beam constraint, tighter
quality selection
Half of the seeds are rejected, efficiency not affected

E. Brondolin, Connecting The Dots 2015
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Developments for LHC Run 2: CMS Tracking

ý Cluster charge cut

Larger occupancy resulted in doubling the time and the fake rate
Cluster charge cut accounts for sensor thickness, pT and crossing
angle
Timing and fake rate are back to normal

E. Brondolin, Connecting The Dots 2015
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Developments for LHC Run 2: CMS Tracking

ý New iteration for high pT jets

Iterative cluster splitting in the pixels
k -means clustering, taking into account the total cluster charge
Improved efficiency at small ∆R

E. Brondolin, Connecting The Dots 2015
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Developments for LHC Run 2: CMS Tracking

ý Two new iterations for muons

Inward: muon system→ tracker
Outward: tracker→ muon system, with looser cuts

E. Brondolin, Connecting The Dots 2015

R. Frühwirth, HEPHY Vienna 17 Vertex 2015



Developments for LHC Run 2: CMS Tracking

ý Reduction of time consumption

Optimization of the code and the iteration logic
Factor 2 at PU=20, factor 3 at PU=30, factor 4 at PU=70

E. Brondolin, Connecting The Dots 2015
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Developments for LHC Run 2: CMS Tracking

ý Expected performance for Run 2

Efficiency for prompt tracks is similar
Fake rate is reduced by a factor of up to 6
Efficiency for displaced tracks is slightly lower

E. Brondolin, Connecting The Dots 2015
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Developments for LHC Run 2: LHCB Tracking

ý See talk by Stefano Gallorini!
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Real-time Tracking: ATLAS Fast Tracker

ý See talk by Guido Volpi!
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Real-time Tracking: CMS Track Trigger

ý See talk by Marco De Mattia!
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Real-time Tracking: CBM Tracking

ý CBM experiment

Future fixed-target heavy-ion experiment at FAIR
107 Au+Au collisions/sec
∼1000 charged particles/collision
Non-homogeneous magnetic field
Double-sided strip detectors→ 85% fake space-points!

THE SILICON TRACKING SYSTEM

The Silicon Tracker is CBM’s core detector system. The harsh collision environment
necessary for the physics studies of CBM requires the adoption of a novel concept for
charged-particle tracking and the reconstruction of heavy-flavor decays. It can only be
realized with a silicon tracking system of unprecedented performance. The goal is to
develop a Silicon Vertex Spectrometer similar to a system recently pioneered by the
NA60 experiment [4] at the SPS. A telescope of silicon detectors with high spatial
resolution will be arranged in a strong magnetic dipole field just downstream of the
target, in front of detectors for particle identification. It will exclusively reconstruct the
tracks and momenta of the charged particles created in the collisions and will identify
decay vertices of massive short-lived particles containing heavy quarks.

The measurement of “open charm” is one of the prime interests of CBM and at
the same time one of the most difficult tasks. The benchmark for the performance of
the Silicon Tracking System is the reconstruction of D-mesons through their hadronic
decays D0 → K−π+ (cτ ≈ 124µm) and D± → K∓π±π± (cτ ≈ 317µm). They have
to be identified among the about 1000 charged particles that are produced in a central
25 GeV/n Au+Au collision.

FIGURE 1. (a) Schematical view of the CBM experiment. (b) Concept of the Silicon Tracking System.

Detector Concept

The concept of the Silicon Tracker is shown in Fig. 1b. Seven detector stations with
a geometrical acceptance 50–500 mrad are arranged in the 1 m long gap of a super-
conducting dipole magnet with 1 Tm bending power. This layout achieves a generic
momentum resolution better than 1% at 1 GeV/c. Tracking is realized with four thin
double-sided microstrip detector planes in the downstream part of the telescope. Three
very thin pixel detector planes close to the target provide true space points with very
high position resolution for the vertex measurement. They may be installed in vacuum.
The first pixel detector station in 5 cm distance to the target has 25 cm2 active area. The
last station at 100 cm extends over 1 m2. Its size alone already justifies strip technology.

http://www-alt.gsi.de/documents/DOC-2006-Nov-46-1.pdf
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Real-time Tracking: CBM Tracking

ý Event reconstruction

Full reconstruction online and offline
Cellular Automaton track finder
Kalman filter track fitter
Short-lived-particle finder
All reconstruction algorithms are vectorized and parallelized

Ivan Kisel, Uni-Frankfurt, FIAS, GSI CHEP 2015, Okinawa, 13.04.2015      /12 
 

Reconstruction Challenge in CBM at FAIR/GSI

• Future fixed-target heavy-ion experiment 
• 107 Au+Au collisions/sec 
• ~ 1000 charged particles/collision 
• Non-homogeneous magnetic field 
• Double-sided strip detectors (85% fake space-points)

Full event reconstruction will be done  
on-line at the First-Level Event Selection (FLES) and  
off-line using the same FLES reconstruction package. 

Cellular Automaton (CA) Track Finder 
Kalman Filter (KF) Track Fitter 
KF short-lived Particle Finder 

All reconstruction algorithms are vectorized and parallelized.

2

V. Akishina and I. Kisel, CHEP2015
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Real-time Tracking: CBM Tracking

ý CA track finder

Intrinsically parallel, simple, very fast
Build short track segments
Connect according to the track model
Tree structures appear, collect segments into track candidates
Select the best track candidates
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Real-time Tracking: CBM Tracking

ý KF track fit library

Tools: filter, smoother, deterministic annealing filter
Variants: single precision, double precision, square-root filter, UD
factorization filter
Propagator: Runge-Kutta, analytic formulas
Excellent many-core scalability!

Ivan Kisel, Uni-Frankfurt, FIAS, GSI CHEP 2015, Okinawa, 13.04.2015      /12 
 

3

Kalman Filter (KF) Track Fit Library

Conventional KF DP vs. SP

Strong many-core scalability of the Kalman filter library

Conventional KF RK4 vs. Analytical

Square-Root KF UD KF

with I. Kulakov, H. Pabst* and M. Zyzak (*Intel)

Kalman Filter Methods 
Kalman Filter Tools: 
• KF Track Fitter 
• KF Track Smoother 
• Deterministic Annealing Filter 
Kalman Filter Approaches: 
• Conventional DP KF 
• Conventional SP KF 
• Square-Root SP KF 
• UD-Filter SP 
• Gaussian Sum Filter 
Track Propagation: 
• Runge-Kutta 
• Analytic Formula

Implementations 
Vectorization (SIMD): 
• Header Files 
• Vc Vector Classes 
• ArBB Array Building Blocks 
• OpenCL 
Parallelization (many-cores): 
• Open MP 
• ITBB 
• ArBB 
• OpenCL 
Precision: 
• single precision SP 
• double precision DP

Comp. Phys. Comm. 178 (2008) 374-383

V. Akishina and I. Kisel, CHEP2015
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Real-time Tracking: CBM Tracking

ý Track finding efficiency

Gather minimum bias events into a single event

Ivan Kisel, Uni-Frankfurt, FIAS, GSI CHEP 2015, Okinawa, 13.04.2015      /12 
 

CA Track Finder at High Track Multiplicity

7

Stable reconstruction efficiency and time as a second order polynomial w.r.t. to track multiplicity

MC Tracks
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Au+Au mbias events at 25 AGeV

1 mbias event, <Nreco> = 109 5 mbias events, <Nreco> = 572 100 mbias events, <Nreco> = 10340

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder as a single event

V. Akishina and I. Kisel, CHEP2015
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Real-time Tracking: CBM Tracking

ý Time-based track reconstruction

Beam in CBM is continuous
Measurements will be 4D: x , y , z, t
Significant overlapping of events in the detector
Reconstruction of time slices instead of events

Ivan Kisel, Uni-Frankfurt, FIAS, GSI CHEP 2015, Okinawa, 13.04.2015      /12 
 

8

Time-based (4D) Track Reconstruction with CA Track Finder

4D event building is scalable with the speed-up factor of 10.1; 3D reconstruction time 8.2 ms/event is recovered in 4D case

Stage of the algorithm % of total 
execution time

Initialisation 8
Triplets construction 64

Tracks construction 15

Final cleaning 13

Sp
ee
d-
up

Speed-up factor due to parallelization within the time-slice

Total CA time = 84 ms

Total CA time = 849 ms 100 mbias events in a time-slice

• The beam in the CBM will have no bunch structure, but continuous. 
• Measurements in this case will be 4D (x, y, z, t).  
• Significant overlapping of events in the detector system.  
• Reconstruction of time slices rather than events is needed.

V. Akishina and I. Kisel, CHEP2015
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Real-time Tracking: LHCb

ý Plans for HL upgrade

Specialized tracking processor with 40 MHz throughput
Based on concept of Artificial Retina

ý Principles of Artificial Retina

The parameter space of the tracks is discretized into cells
Each cell corresponds to an ideal track intersecting the detector layers
in the centers of its receptive fields
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Figure 1. Schematic representation of the detector mapping. The parameter space (left panel) is discretized
into cells; to each cell corresponds a track that intercepts the detector layers in a determined sequence of
receptors (right panel).

Figure 2. Sketch of a simple event containing only two tracks and a few noise hits (left panel) and response
of the retina (right panel).

eq. (2.1), recovers resolution associated with the discretization of the parameter space and allows
for coarse retina granularities with no penalty in performance. The total number of cells is mainly
driven by the capability of separating similar tracks. The retina’s continuous, analog-like response
function and intrinsic capability of a fully parallel implementation down to hit level offer signifi-
cant additional advantages. However, there is a significant complexity leap in passing from a proof
of concept in a two-dimensional ideal case to a demonstration of feasibility in a real high-energy
physics experiment with commercially available electronic components.

3 Implementation

We implement the algorithm and simulate its performance in realistic conditions using the LHCb
detector upgraded for the 2020 high-luminosity operations as a use case [10]. The upgraded LHCb
detector [11] is a single-arm forward spectrometer covering polar angles from 0.8

◦
to 15.4

◦
from

the beam. The detector is designed to study particles containing bottom or charm quarks produced
in 14 TeV proton-proton collisions occurring every 25 ns at luminosities of 2–3× 1033 cm−2 s−1,
with 7.6–11.4 average interactions per crossing. We use the standard LHCb upgrade simulation,

– 3 –
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Real-time Tracking: LHCb

For a real track, the distance between the actual hits and the centers
of the receptive fields is computed
The response or excitation of a cell is a function of these distances,
summed over all receptors and hits

Figure 2: Illustration of the retina-algorithm concept. (Reproduced with permission from
Ref. [17]). The (x+, x−) labels that appear in the top-left quadrant correspond to the
coordinates we refer to as (p, q) in the text.

other arbitrarily optimized functions can be used. After all hits are processed, tracks are
identified as local maxima in the cell space, via a simple, local cluster-finding algorithm.
Hence, for each incoming hit in an event, the algorithm computes the weighted distance
of that hit from each intersection. The weighted distances are summed over the nearest
cells and all event hits. The resulting set of excited cells is appropriately clustered and
zero-suppressed to derive the corresponding tracks.

The algorithm relies on extensive parallelism and interconnectivity. The weighted
interpolation allows preserving the native resolution on track parameters, while keeping
the cell granularity, hence the hardware size of the system, reasonably small. The grid
pitch can be significantly larger than the native detector spatial resolution, which can be
recovered provided that a sufficient amount of bits are used to store each cell’s response.
The retina algorithm features several analogies with the Hough transform technique [18].
The capability of a continuous response function and the fully parallel implementation,
however, offer significant additional advantages. In what follows we describe the design of
a realistic real-time tracking system implementing this algorithm, capable of performing a
significant portion of the LHCb tracking, and evaluate its performance.

2.2 Architecture

The functional architecture of the proposed TPU (Fig. 3) mirrors this conceptual descrip-
tion. The array of receptor cells is mapped into an array of cellular processors. Each
processor evaluates and accumulates the excitation of one or more cells. Hits flow from the
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Real-time Tracking: LHCb

Tracks are identified by local maxima of response in the array of cells
Similar to Hough transform in 2D
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Figure 1. Schematic representation of the detector mapping. The parameter space (left panel) is discretized
into cells; to each cell corresponds a track that intercepts the detector layers in a determined sequence of
receptors (right panel).

Figure 2. Sketch of a simple event containing only two tracks and a few noise hits (left panel) and response
of the retina (right panel).

eq. (2.1), recovers resolution associated with the discretization of the parameter space and allows
for coarse retina granularities with no penalty in performance. The total number of cells is mainly
driven by the capability of separating similar tracks. The retina’s continuous, analog-like response
function and intrinsic capability of a fully parallel implementation down to hit level offer signifi-
cant additional advantages. However, there is a significant complexity leap in passing from a proof
of concept in a two-dimensional ideal case to a demonstration of feasibility in a real high-energy
physics experiment with commercially available electronic components.

3 Implementation

We implement the algorithm and simulate its performance in realistic conditions using the LHCb
detector upgraded for the 2020 high-luminosity operations as a use case [10]. The upgraded LHCb
detector [11] is a single-arm forward spectrometer covering polar angles from 0.8

◦
to 15.4

◦
from

the beam. The detector is designed to study particles containing bottom or charm quarks produced
in 14 TeV proton-proton collisions occurring every 25 ns at luminosities of 2–3× 1033 cm−2 s−1,
with 7.6–11.4 average interactions per crossing. We use the standard LHCb upgrade simulation,
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Real-time Tracking: LHCb

ý Artificial Retina for VELO/UT

Consider virtual plane at z = zvp

Track is defined by transverse coordinates u, v
2D artificial retina with 2×22500 cells
Implementation in FPGA

Track parameters

Tracks can be described with n generic variables (xi , . . . , xn). Adding
a dimension is straightforward. Here we choose: u, v , d , z0, p.

Assume a virtual plane positioned
somewhere in the tracking volume:

u, v coordinates of the intersection
of track on an virtual plane

d transverse impact parameter
(TIP)

z0 z coordinate of the point of
closest approach to the z-axis

p momentum of the track

x

z
uz0

zvp

p

P. Marino (SNS & INFN-Pisa) June 19, 2013 3 / 20

Figure 9: Schematic illustration of track parameters.

We opt for an alternative, prioritized approach by factorizing the task into two separate
operations: (i) in the pattern recognition step real tracks are distinguished from accidental
combination of random hits using a subspace of track parameters; (ii) in the parameter
extraction step, track parameters are determined extending to the full dimensionality.
The geometry of typical tracks in LHCb allows factorization of the parameter space into
the product of two subspaces with rather distinct dimensional scales, since variations in
the (d, z, k) parameters can be approximated to small perturbations of the main (u, v)
parameters. This allows performing the pattern recognition using only a two-dimensional
retina in the (u, v) space, where other parameters fixed to zero (d = z = k = 0). At this
level, a track is identified by a cluster over threshold in this two-dimensional space. In the
second step, a preliminary estimate of track parameters is performed within the Stratix-V
chip using the strategy discussed in Sec. 3.3, by balancing the excitation found in the
lateral cells for each compact dimension. For each main cell (u, v, 0, 0, 0) we fill six lateral
cells (u, v,±δd,±δz,±δk), where δd = 1 mm, δz = 150 mm and δk =1 GeV−1 as shown in
Fig. 10. The u, v calculation implies finding the center of mass of a 3× 3 square, whereas
the extraction of (d, z, k) requires computing the center of mass of a 3× 3× 3 cube whose
only a subset of coordinates in each dimension are nonzero, thus reducing the problem
to the processing of seven values. A further refinement of track parameters estimation is
achieved with a linearized track fitting algorithm [9,10] by using detector hits associated
with the maximum excitation. This straightforward computation of scalar products can
be executed either within the Stratix-V chip or the available CPU in the event builder
box with negligible usage of logic. By identifying each track using m parameters, we write

x = x(p1, ..., pm) = x(u, v, d, z, k),

14
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Real-time Tracking: LHCb

ý Architecture

Overview of the architecture of the track processing unit (TPU)

Cellular	


Engines	



switching 
network	



Fitter	



Tracking layers	



Separate trigger-DAQ path	



Custom switching network	


delivers hits to appropriate cells	



Data organized	


by cell coordinates	



Blocks of cellular	


processors	



Track finding and 	


parameter determination	



To DAQ	



Figure 3: TPU architecture overview.

detector planes into a switching network, that delivers each hit to all relevant processors
in parallel. Each cell is implemented as an independent block of logic (processing engine)
that performs the necessary elementary operations. Local maxima are found in parallel
in all processors, with some exchange of information between adjacent processors. The
coordinates and intensity of the local maxima, and the intensities of their nearest neighbors
are output sequentially. Finally, track parameters are extracted from the cell information.

The whole processing is envisioned to happen in a time short enough that it effectively
appears to the rest of the DAQ as if tracks are coming out of the detector at the same
time as the hits and all other raw data. Input data must be a duplicate of the information
flowing directly to the DAQ – and eventually the reconstructed TPU tracks that are
reconstructed are made available to the trigger and DAQ system, as if the TPU were an
additional subdetector, only providing tracks as raw data rather than simple hits. This
approach allows the maximum possible flexibility in the use of the track information, with
the minimal perturbation of the rest of the architecture. At the time this architecture was
first considered, the required massive parallelism was neither easily implementable, nor
really necessary for the needed applications. Today, however, with the progress in digital
electronics, and the more ambitious goals we are aiming at, this approach turns out to be
feasible and very effective.Implementation is described in the next section.
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Real-time Tracking: LHCb

ý Simulation, timing and resolution

Design has been validated by a ModelSim simulation
TPU can keep up with an input frequency of 40 MHz at the occupancy
predicted for 2020
Curvature resolution about 25% worse as offline

ν = 7.6 ν = 11.4
Number of physical hits 880 1220
Number of hits delivered to the engines 32805 48976
Number of clusters 121 223
Number of hits per engine 1.3 1.95

Table 4: TPU occupancy averaged over 104 minimum-bias events generated with L =
2× 1033cm−2s−1 at ν = 7.6 and L = 3× 1033cm−2s−1 at ν = 11.4.
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Figure 15: Comparison between curvature resolution achieved with the TPU (right panel)
and with the VELO-UT offline reconstruction algorithm (left panel).

because the TPU uses only two UT layers compared to the four layers used offline. Part of
this is likely to be recoverable with optimized track fitting configurations. In addition, a
layout in which the computation-light linearized track fitting is promoted into the FPGA
would leave the event builder PC free to add the information relative to the other two
layers and recover full offline resolution. Similar results are achieved for all other track
parameters.

Tables 2 to 4 show that the tracking performance of the TPU is very robust against
increases in event complexity associated with higher instantaneous luminosity. The TPU
track finding preserves substantially constant efficiency and has only a minor increase in
ghost rate.
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Other developments: CMS @ HL-LHC tracking

ý New tracker for High-Luminosity LHC

Main challenges are radiation and pile-up caused by the high
luminosity
Radiation challenge will be addressed by the detector designers
Pile-up challenge requires a track trigger complementing the muon
and calorimeter information

ý See talk by Marco De Mattia!
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Other developments: CMS @ HL-LHC tracking

Simulated Event at PU=140 (102 Vertices)
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Other developments: CMS @ HL-LHC tracking

ý Layout of the CMS tracker for HL-LHC

Pixels: 4 barrel layers and 10 forward/backward disks
Pixel-strip (PS) modules: 3 barrel layers and 5 forward/backward disks
Strip-strip (2S) modules: 3 barrel layers and 5 forward/backward disks
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Other developments: CMS @ HL-LHC tracking

ý Stacked sensors for triggering

Want to exploit the stacked geometry for full offline reconstruction
Reconstruct Vector hits from position measurements
PS modules: 2 precise coordinates, 1 precise direction
2S modules: 1 precise coordinate, 1 precise direction
Precision depends on stack separation
Rough estimate of curvature possible
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Other developments: CMS @ HL-LHC tracking

ý Track finding with vector hits

Preliminary study for WIT 2012, simplified simulation
Have begun to set up a full simulation
Will explore several algorithms:

Convergent Hough transform
Cellular Automaton
Artificial Retina
Combinatorial Kalman filter
. . .
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Other developments: Belle II track finding

ý VXD — Vertex Detector

VXD consists of two parts
SVD (Silicon Vertex Detector) with 4 layers of double-sided Si strip
sensors
PXD (Pixel Detector) with two layers of DEPFET pixel sensors

The Silicon Vertex Detector of Belle II M. Friedl

Figure 1: Layout of the Belle II Silicon Vertex Detector (SVD) including the two innermost pixel layers
(gray). Drawings and dimensions only show the active areas of the sensors.

related to the readout speed. Toward the end of the experiment, this inefficiency was at the level of
a few percent.

In order to overcome those limitations in view of a luminosity 40 times higher than in the past,
the Belle II Silicon Vertex Detector requires

• fast shaping in order to keep the occupancy low,

• pipelined readout and a faster clock speed to avoid dead time.

This obviously implies a completely new readout system and thus a full redesign of the SVD.

3. The New Silicon Vertex Detector

The future Silicon Vertex Detector will, as the previous one, be composed of four layers of
double-sided silicon strip detectors. However, they will be shifted towards higher radii, namely
3.8, 8.0, 11.5, and 14.0cm. A new pixel detector, using the DEPFET technology [5], will be
arranged in two layers around the beam pipe at radii of 1.4 and 2.2cm. The pixel detector readout
has a rather long effective integration period of 20 µs, but it obtains precise spatial data without
ambiguities due to its individual pixel cell size of 50× 50 and 50× 75 µm2 for the two layers,
respectively. In contrast, the silicon strip detector (SVD) provides very high temporal granularity
of the order of 20ns by a hit time reconstruction procedure described later, but it leaves spatial
ambiguities due to ghost hits. Thus, it is essential to combine the data of PXD and SVD in order to
take advantage of both systems.

The layout of the future PXD and SVD is shown in fig. 1. It has the same polar angle coverage
as the previous experiment, from 17◦ to 150◦, but the most forward sensor of the SVD in each of
the outer three layers will be slanted (and thus trapezoidal). From the mechanical point of view,
this arrangement is more complicated than a straight ladder, but is has obvious advantages: First
of all, the precision is superior, because the particles created around the interaction point traverse
the slanted sensors under a steeper angle, resulting in narrower clusters and thus in a better signal-
to-noise ratio. Moreover, it also implies a lower effective material thickness for the benefit of less
multiple scattering. Both arguments lead to an improved spatial (and impact parameter) resolution.
Finally, using straight ladders would require an additional sensor in each layer, equipped with
readout chips at the front-end, and requiring corresponding electronics in the back-end, what causes
significant extra costs without benefit.

3
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Other developments: Belle II track finding

ý SVD structure

SVD Structure Overview
SVD cut model

Four layers
Layer structure

RL3 = 38mm 
RL4 = 80mm

RL5 = 115mm 
RL6 = 140mm

• 4 SVD layers (L3 to L6) 
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in a windmill structure 
• Improved resolution at IP wrt. 
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Other developments: Belle II track finding

ý SVD stand-alone track finding

Want to find low pT tracks
Needed for data reduction in the PXD, has to run in HLT
Only 4 layers, little internal redundancy→ prior information required
Combinatorics reduced by precomputed sector map
Several sector maps for different momentum ranges allowed
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Other developments: Belle II track finding

ý Sector map

Sensors are sub-divided into sectors
Each sector knows its friend sectors
Sectors are friends if a track from the vertex can pass through both of
them
Hits are sorted into sectors
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Other developments: Belle II track finding

ý Segment finding

Segments are pairs of hits in friend sectors
Sector map decides whether segment is accepted (2-hit filter)

ý Tracklet finding

Tracklets are pairs of segments sharing a hit
Sector map decides whether tracklet is accepted (3-hit filter)
Cut-based at the moment, will be supplemented by a NN

ý Track finding

Cellular Automaton connects tracklets to track candidates
Quality estimation by fast circle/helix fit or full KF track fit
Hopfield network selects best non-overlapping set of track candidates
Extrapolate to PXD and define regions of interest
Alternatives are envisaged, e.g. combinatorial Kalman Filter, 4-hit
filters
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Other developments: Belle II track finding

ý Overview of SVD track finding

Future state of the trackFinderVXD-approach (event-part)
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Other developments: Belle II track finding

ý CDC — Central Drift Chamber

56 concentric layers in 9 super layers, alternating axial and stereo
14336 drift cells with sense wires in approximate hexagonal
arrangement
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Other developments: Belle II track finding

ý Algorithms

Cellular Automaton
Legendre transformTrack finding in the Central Drift Chamber. Turn unmarked hits

. . .

Oliver Frost on behalf of the Belle II collaboration | DESY | 2015-04-13 | Page 4/12

Belle II and the Central Drift Chamber Weighted Cellular Automaton Concrete Application

V. Trusov, Belle II Tracking Meeting Pisa 2014
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Other developments: Belle II track finding

ý Cellular Automaton

Step 1: Build segments from individual hits in each super layer

Two weighted cellular automata at different level of detail

Build segments from individual hits in each super layer

Build tracks from segments

Oliver Frost on behalf of the Belle II collaboration | DESY | 2015-04-13 | Page 9/12

Belle II and the Central Drift Chamber Weighted Cellular Automaton Concrete Application

Step 2: Build tracks from segments

Two weighted cellular automata at different level of detail

Build segments from individual hits in each super layer

Build tracks from segments

Oliver Frost on behalf of the Belle II collaboration | DESY | 2015-04-13 | Page 9/12

Belle II and the Central Drift Chamber Weighted Cellular Automaton Concrete Application

O. Frost, CHEP 2015
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Other developments: Belle II track finding

ý Legendre transform

Extension of Hough transform
Conformal mapping transforms tracks to straight lines, drift circles
remain circles

by Viktor Trusov 3 

Chain of the method 

Hits in CDC 

Conformal 
transformation 
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V. Trusov, Belle II Tracking Meeting Pisa 2014
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Other developments: Belle II track finding

Legendre transform: drift circles to sine curves
An intersection of sinusoids in Legendre space corresponds to a
common tangent to drift circles
Legendre space is discretized, maxima found by voting algorithm
Voting implemented by QuadTree

by Viktor Trusov 3 
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V. Trusov, Belle II Tracking Meeting Pisa 2014
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Other developments: Belle II track finding

ý Example event

Simulated event: B− → D0 (→ K− π+) π− + beam background

by Viktor Trusov 21 

Actual results of algorithm 

Simulated event: B− → D0 → K− π+  π− + beam background 

12.05.2014 Applying Legendre transformation 

method for Belle II tracking 

Working only with tracks originating close from IP 

Efficient for finding tracks with high momentum 

 

V. Trusov, Belle II Tracking Meeting Pisa 2014
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Other developments: Belle II Track merging and fit

ý Track merging

Extrapolate tracks from CDC into VXD
Extrapolate tracks from VXD into CDC

ý Final track fit

Least-squares fit with GENFIT package
Can be done for several mass hypotheses

ý GENFIT

Detector independent fitting package, detector description is Geant4
geometry/material
Various propagators: analytical, Runge-Kutta, others can be
implemented by the users
Various methods: Kalman filter, deterministic annealing filter, general
broken lines fit
Very flexible: accepts hits on plane sensors (pixels/strips), wires with
drift circles, other geometries can be implemented by the users
Easy to interface with MillePede
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Other developments: Fuzzy c-regression

ý Basics

Starting point is an unlabeled mixture of regression models
Fuzzy c-regression (FCR) is a method for simultaneous fuzzy labeling
and estimation of the regression models, see [?]
Solution is obtained by an iterative procedure, similar to EM algorithm

HATHAWAY AND BEZDEK: SWITCHING REGRESSION MODELS AND FUZZY CLUSTERING 199 

example at (13). Fortunately, in cases where the minimization 
of Q ( P l ,  . . . , P c )  must be done iteratively, the convergence 
theory of [ 181 shows that a single step of Newton's method on 
Q, rather than exact minimization, is sufficient to preserve the 
local convergence results. The case of inexact minimization 
in each half step is further discussed and exemplified in 
connection with a different algorithm in [20]. 

111. NUMERICAL EXAMPLES 
We give two numerical examples to illustrate fuzzy c- 

regression models. Example 1 concems c = 2 linear models, 
while Example 2 discusses c = 2 quadratic models. 

Example 1 
This example considers the simple c = 2 switching regres- 

sion model given by (3). The distribution of the artificial test 
data and the simulation results are described after precise iter- 
ate formulas are given for both the FCRM and EM approaches. 
FCRM iteration is developed by adapting the general algorithm 
stated earlier to E&(&) = ( v k  - f i ( X k ; P ; ) ) 2  and m = 2, for 
which the calculation in step 2 becomes, for i = 1 and 2, 

(174 
and 

where 

Similarly, the EM algorithm in the mixture density approach 
takes the form of a successive iteration between a poste- 
rior probability matrix U E Mfcn  and parameter estimates 
for the model. Instead of (11) in step 3, the next matrix 
U('+') is calculated from the newest parameter estimate 
( a 1  1 a2 , P 1  1 , P 1 2  , 0 1  , P 2 1 ,  P 2 2 , 0 2  ) by 

U:;+') = a i p ( y k  - P i l x k  - pi2; 0, 0 1 ) / P k  for 
i = 1 ,2 ,  where a 1  = a , a 2  = 1 - a,  and (18a) 

p k  a l p ( y k  - P11.k  - p 1 2 ;  0301) 

f a 2 P ( Y k  - b 2 1 x k  - p 2 2 ;  0,02) .  (18b) 

TABLE I1 
TRUE PARAMETER VALUES FOR THE THREE CASES ILLUSTRATED IN EXAMPLE 1 

a P11 P12 P21 P22 0 1  0 2  

Case 1 0.50 0.0 0.0 1.0 0.0 0.25 0.250 
Case 2 0.50 0.0 0.0 1.0 0.0 0.75 0.750 
Case 3 0.75 0.0 0.0 1.0 0.0 0.25 0.125 

1 1  28 

Fig. 2. Scatter plot for a case 1 sample. Graph of true model( fl(x) = 0; 
f2(z) = x) included. 

The equations which use the current matrix U to define the 
next EM parameter estimate for P l l , P 1 2 , P 2 1 ,  and P22 are 
obtained from (17) by replacing each occurrence of ( U ; k ) '  

with U i k .  These new values of the model parameters are then 
used to calculate the new standard deviations: 

Finally, the new estimate of a is given by 
here) 

a =  n 

, i=l, 2. (19) 

(recall that c = 2 

For purposes of comparison, (20) is also used with the termi- 
nal fuzzy c-regression models partition to calculate a fuzzy 
analogue of the proportion parameter. Both methods used 
E = 0.0001 in the termination check (step 4) that stops the 
iteration as soon as 

n c  

- < E .  

k = l  i = l  

Tests were conducted for the three sets of parameter values that 
are given in Table 11. For each of the three cases, 25 samples, 
each of size 200, were generated according to the model in (3); 
each datum ( Z k ,  Y k )  was generated by the following scheme. 
First, a uniform (in (0,l)) random number z 1  is generated, and 
its value is used to select a particular linear model from (3). 
If z1 < a, then model 1 is used; otherwise, model 2 is used. 
Let = 1 if z 1  < a; otherwise z = 2 .  Next, x k  is picked to 
be a uniform random number in (-3,3) and a normal random 
variate E;  with mean 0 and standard deviation oi is calculated. 
The value y k  is assigned using (3), X k ,  E;,  and the appropriate 
model parameters from Table 11. 

Typical scatterplots for each of the three types of samples 
are shown in Figs. 2 4 .  The uniform (pseudo-) random data 
were generated using the Microsoft Basic random number 
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Other developments: Fuzzy c-regression

ý Application to tracking

Conformal transformation transforms circles to straight lines
Initial number of tracks and initial values of angle and intercept from 2D
Hough transform
Run FCR on all hits in the u-v plane

Niu Li-Bo, Chinese Physics C Vol. 39, No. 3 (2015)
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Other developments: Fuzzy c-regression

ý Simulated example

Prototype TPC for ILC
21 measurements between 30 mm and 130 mm
Spatial resolution σ = 100µm
Hit efficiency 90%
Artificial noise added

Niu Li-Bo, Chinese Physics C Vol. 39, No. 3 (2015)
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Other developments: Fuzzy c-regression

ý Extension to circle finding

A circle fit in the plane can be transformed to fitting a plane in 3D by
projection to the Riemann sphere or a circular paraboloid
FCR can be used to fit all planes/circles simultaneously

Niu Li-Bo, Chinese Physics C Vol. 39, No. 3 (2015)
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Other developments: Fuzzy c-regression

ý How useful is it?

Depends heavily on a good initialization of the regression models
Remains to be seen whether useful for high track multiplicity
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Summary and outlook

ý Improvements for Run2

Basic approach of iterative seeding and track following still feasible
Accumulation of “small” changes can have a big impact
Correct treatment of pixel clusters essential for efficiency and
resolution in narrow jets

ý Real-time tracking

Requires hardware beyond CPU: GPU, Associative Memory, FPGA
Code adapted to various types of hardware, vectorized, parallelized
If correctly designed, bulk of code can still be shared between on-line
and off-line
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Summary and outlook

ý Vertex reconstruction

Iterative vertex finding still feasible in Run 2
Imaging algorithm possible alternative
Plan to study application of model-based clustering to vertex finding

Uses Bayesian paradigm
Can use prior information on number of vertices
Can use prior information on vertex distribution

ý Other topics

See talks at “Connecting The Dots" workshop in Berkeley, Feb. 2015:

https://indico.physics.lbl.gov/indico/conferenceDisplay.py?confId=149

R. Frühwirth, HEPHY Vienna 70 Vertex 2015



Summary and outlook

Thank you!
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Bonus slides: ALICE GPU Tracking

ý ALICE detector

M.Krzewicki, CHEP2015

The ALICE experiment

• A CERN experiment @LHC 
• Optimised for heavy-ion data, takes also proton-proton. 
• Located at LHC Point2 (St.Genis).

2
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Bonus slides: ALICE GPU Tracking

ý ALICE TPC

Formidable tracking problem
1846 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 4, AUGUST 2011

Fig. 1. Proton-proton event in the ALICE TPC detector. Real data recon-
structed by HLT, run 00010480 (2009).

Fig. 2. Simulated heavy ion event in the ALICE TPC detector.

Fig. 3. The ALICE spectrometer at LHC.

The core of the event reconstruction happens in the TPC
sector tracker, which creates the tracks from the measurements.
It is the only component which processes the TPC hits, the
higher level components operate on the reconstructed sector
tracks.

Fig. 4. Geometry of a TPC sector.

Fig. 5. HLT reconstruction scheme.

III. HLT TRACKER ALGORITHM

An event coming from the detector only contains information
about the spatial position of the hits, but no information about
particles which caused the hits. The task of the track finder is to
group the hits in such a way that they form the original particle
trajectories.

This is a combinatorial pattern recognition problem. Since
the potential number of hit combinations is enormous,1 there is
no exact solution of the problem. Therefore heuristic methods
are applied. Due to the rapid growth of the number of combi-
nations with increase of the amount of input data the key issue
for the reconstruction is dependence of the reconstruction time
on the number of tracks to be reconstructed. Fig. 6 shows the
reconstruction time of the presented algorithm for events with
different number of tracks. One can see on the figure that the
time dependence is linear and the algorithm requires about 130

s per track independent of the track multiplicity, thus the com-
binatorial part of the algorithm is built optimally.

1For example, given tracks producing hits in each of 159 TPC rows, the
number of possible hit combinations to create a single track is equal to .

A pp event (real data)
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An event coming from the detector only contains information
about the spatial position of the hits, but no information about
particles which caused the hits. The task of the track finder is to
group the hits in such a way that they form the original particle
trajectories.

This is a combinatorial pattern recognition problem. Since
the potential number of hit combinations is enormous,1 there is
no exact solution of the problem. Therefore heuristic methods
are applied. Due to the rapid growth of the number of combi-
nations with increase of the amount of input data the key issue
for the reconstruction is dependence of the reconstruction time
on the number of tracks to be reconstructed. Fig. 6 shows the
reconstruction time of the presented algorithm for events with
different number of tracks. One can see on the figure that the
time dependence is linear and the algorithm requires about 130

s per track independent of the track multiplicity, thus the com-
binatorial part of the algorithm is built optimally.

1For example, given tracks producing hits in each of 159 TPC rows, the
number of possible hit combinations to create a single track is equal to .

A heavy ion event (simulated)
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Bonus slides: ALICE GPU Tracking

ý ALICE High-level trigger

Full track reconstruction in HLT
Based on Cellular Automaton approach
Reconstruction time proportional to multiplicityGORBUNOV et al.: ALICE HLT HIGH SPEED TRACKING ON GPU 1847

Fig. 6. Reconstruction time on CPU for events with different track multiplicity.

Fig. 7. a) Neighbors finder. b) Evolution step of the Cellular Automaton.

The tracking algorithm starts with a combinatorial search for
track candidates (tracklets), which is based on the Cellular Au-
tomaton method [3]. Local parts of trajectories are created from
geometrically nearby hits, thus eliminating unphysical hit com-
binations at the local level. The combinatorial processing com-
poses the following two steps:

• 1. Neighbor finder: For each hit at a row k the best pair
of neighboring hits from rows k 1 and k 1 is found,
as it is shown in Fig. 7(a). The neighbor selection criteria
requires the hit and its two best neighbors to form a straight
line. The links to the best two neighbors are stored. Once
the best pair of neighbors is found for each hit, the step is
completed.

• 2. Evolution step: Reciprocal links are determined and
saved, all the other links are removed (see Fig. 7(b)).

Every saved one-to-one link defines a part of the trajec-
tory between the two neighboring hits. Chains of consecutive
one-to-one links define the tracklets. One can see from Fig. 7(b)
that each hit can belong to only one tracklet because of the
strong evolution criteria. This uncommon approach is possible
due to the abundance of hits on every TPC track. Such a strong
selection of tracklets results in a linear dependence of the
processing time on the number of track candidates. When the
tracklets are created, the sequential part of the reconstruction
starts, implementing the following two steps:

Fig. 8. Reconstruction performance for proton-proton collisions at 14 TeV.

Fig. 9. Reconstruction performance for central heavy ion collisions at 5 TeV.

• 3. Tracklet construction: The tracklets are created by fol-
lowing the hit-to-hit links as it is described above. The ge-
ometrical trajectories are fit using a Kalman Filter, with a

quality check. Each tracklet is extended in order to col-
lect hits being close to its trajectory.

• 4. Tracklet selection: Some of the track candidates can have
intersected parts. In this case the longest track is saved,
the shortest removed. A final quality check is applied to
the reconstructed tracks, including a cut on the minimal
number of hits and a cut for low momentum.

IV. TRACKER EFFICIENCY

The performance of the HLT track finder of 99.9% for proton-
proton events and 98.5% for central Pb-Pb collisions has been
verified on simulated events. Corresponding efficiency plots are
shown on Figs. 8 and 9. In addition to the high efficiency, the
real-time reconstruction is an order of magnitude faster than the
off-line algorithm used as reference.

The described algorithm has the advantage of a high degree of
locality and parallelism. Step one only searches for local neigh-
bors to each hit. It can be done in parallel for all the hits as the
result does not depend on the order of processing. Step three

S. Gorbunov et al., IEEE TNS 58 (2011)
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Bonus slides: ALICE GPU Tracking

ý Cellular automaton

Combinatorial search for track candidates
Unphysical hit combinations are eliminated at the local level
Two steps

a) Neighbor finder: For each hit in row k , search the best pair of adjacent
hits; store the links of the three hits that form a straight line

b) Evolution step: Reciprocal links are determined and saved, all the other
links are removed

GORBUNOV et al.: ALICE HLT HIGH SPEED TRACKING ON GPU 1847
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• 3. Tracklet construction: The tracklets are created by fol-
lowing the hit-to-hit links as it is described above. The ge-
ometrical trajectories are fit using a Kalman Filter, with a

quality check. Each tracklet is extended in order to col-
lect hits being close to its trajectory.

• 4. Tracklet selection: Some of the track candidates can have
intersected parts. In this case the longest track is saved,
the shortest removed. A final quality check is applied to
the reconstructed tracks, including a cut on the minimal
number of hits and a cut for low momentum.

IV. TRACKER EFFICIENCY

The performance of the HLT track finder of 99.9% for proton-
proton events and 98.5% for central Pb-Pb collisions has been
verified on simulated events. Corresponding efficiency plots are
shown on Figs. 8 and 9. In addition to the high efficiency, the
real-time reconstruction is an order of magnitude faster than the
off-line algorithm used as reference.

The described algorithm has the advantage of a high degree of
locality and parallelism. Step one only searches for local neigh-
bors to each hit. It can be done in parallel for all the hits as the
result does not depend on the order of processing. Step three
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Bonus slides: ALICE GPU Tracking

ý Track finding and fitting

Track finding: Track candidates are created by following the hit-to-hit
links
Track fit: The geometrical trajectories are fitted by a Kalman Filter, with
a quality check
Track extension: Track candidates are extended in order to collect hits
close to the trajectory
Track candidate selection: In case of overlaps select the longest track
candidate
Final quality check: Lower cut on number of hits and momentum
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Bonus slides: ALICE GPU Tracking

ý Efficiency and fake rate

GORBUNOV et al.: ALICE HLT HIGH SPEED TRACKING ON GPU 1847
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binations at the local level. The combinatorial processing com-
poses the following two steps:

• 1. Neighbor finder: For each hit at a row k the best pair
of neighboring hits from rows k 1 and k 1 is found,
as it is shown in Fig. 7(a). The neighbor selection criteria
requires the hit and its two best neighbors to form a straight
line. The links to the best two neighbors are stored. Once
the best pair of neighbors is found for each hit, the step is
completed.
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• 3. Tracklet construction: The tracklets are created by fol-
lowing the hit-to-hit links as it is described above. The ge-
ometrical trajectories are fit using a Kalman Filter, with a

quality check. Each tracklet is extended in order to col-
lect hits being close to its trajectory.

• 4. Tracklet selection: Some of the track candidates can have
intersected parts. In this case the longest track is saved,
the shortest removed. A final quality check is applied to
the reconstructed tracks, including a cut on the minimal
number of hits and a cut for low momentum.

IV. TRACKER EFFICIENCY

The performance of the HLT track finder of 99.9% for proton-
proton events and 98.5% for central Pb-Pb collisions has been
verified on simulated events. Corresponding efficiency plots are
shown on Figs. 8 and 9. In addition to the high efficiency, the
real-time reconstruction is an order of magnitude faster than the
off-line algorithm used as reference.

The described algorithm has the advantage of a high degree of
locality and parallelism. Step one only searches for local neigh-
bors to each hit. It can be done in parallel for all the hits as the
result does not depend on the order of processing. Step three

pp collisions at 14 TeV
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tory between the two neighboring hits. Chains of consecutive
one-to-one links define the tracklets. One can see from Fig. 7(b)
that each hit can belong to only one tracklet because of the
strong evolution criteria. This uncommon approach is possible
due to the abundance of hits on every TPC track. Such a strong
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• 3. Tracklet construction: The tracklets are created by fol-
lowing the hit-to-hit links as it is described above. The ge-
ometrical trajectories are fit using a Kalman Filter, with a

quality check. Each tracklet is extended in order to col-
lect hits being close to its trajectory.

• 4. Tracklet selection: Some of the track candidates can have
intersected parts. In this case the longest track is saved,
the shortest removed. A final quality check is applied to
the reconstructed tracks, including a cut on the minimal
number of hits and a cut for low momentum.

IV. TRACKER EFFICIENCY

The performance of the HLT track finder of 99.9% for proton-
proton events and 98.5% for central Pb-Pb collisions has been
verified on simulated events. Corresponding efficiency plots are
shown on Figs. 8 and 9. In addition to the high efficiency, the
real-time reconstruction is an order of magnitude faster than the
off-line algorithm used as reference.

The described algorithm has the advantage of a high degree of
locality and parallelism. Step one only searches for local neigh-
bors to each hit. It can be done in parallel for all the hits as the
result does not depend on the order of processing. Step three

Central heavy ion collisions at 5 TeV
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ý Tracking on GPU hardware

Code ported first to NVIDIA/CUDA, recently to AMD/OpenCL
Only single precision calculations
Numerically stable Kalman filter
Dynamic scheduler, optimized memory layout1850 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 4, AUGUST 2011

Fig. 15. CPU/GPU performance for different event sizes.

the output of the CPU tracker. It can be concluded that the GPU
tracker is in no way inferior to the CPU version.

While porting the tracker, the memory model was slightly
changed. This resulted in more locality for optimal usage of
available GPU memory bandwidth and also had positive cache
effects on the CPU. Because of this and other optimizations, that
were applied the new tracker code performs better by a factor of
two on modern CPUs (benchmarked using 3.2 GHz Intel Ne-
halem, 8 threads and data from Monte-Carlo-simulation) while
the GPU version surpasses the processor by another factor of
3.3 for central lead lead collisions (Fig. 14).

Fig. 15 shows the performance of the CPU and GPU tracker
on Monte-Carlo events of different size. Both trackers show a
linear dependency on input size while the GPU tracker has a
rather large offset. Obviously the performance benefit of the
GPU tracker is the larger the larger the event size.

As a proof of concept an analysis of a different GPU tracker
variant was created (pp-mode GPU tracker). However, the CPU
tracker still performs better for pp events and the former GPU
tracker performs better for heavy ion events.

IX. SUMMARY

A fast on-line tracker has been developed for the ALICE High
Level Trigger. The algorithm combines a Cellular Automaton
method being used for a fast pattern recognition and the Kalman
Filter method for fitting of found trajectories and for the final
track selection.

The algorithm has proved its high performance on Monte-
Carlo events (99.9% track finding efficiency for 14 TeV proton-
proton events and 98.5% efficiency for central Pb-Pb events).
The HLT tracker performs the on-line event reconstruction since
the first collision runs in 2009.

An important feature of the developed algorithm is the ability
to use GPU hardware accelerators. The algorithm was success-
fully ported to NVIDIA CUDA. For a better GPU utilisation
several code optimizations were made, resulting in improved
performance of both GPU and CPU trackers.

The GPU tracker is incorporated in the ALICE High Level
Trigger framework. It significantly outperforms the CPU im-
plementation for heavy ion events while exactly maintaining its
efficiency. Both versions share a common source code greatly
improving the maintainability.

The port to CUDA required about 9 months of manpower.
The hardware costs are almost negligible as common graphics
cards of the shell can be used, which cost only the fraction of
the compute node itself. New CPUs will rather increase the per-
formance using more cores instead of higher clock frequencies.
This makes parallel approaches like the GPU tracker necessary,
also to utilize modern CPUs to the full extend.

The compute farm at CERN is currently upgraded with both
state of the art CPUs and the new NVIDIA Fermi GPU. First
benchmarks on development nodes show the same performance
ratio of about three, although neither CPU nor GPU code has
been optimized for the new hardware yet.
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