LHCb Silicon Detectors: The Run 1 to Run 2 transition & First Experience of Run 2

Kurt Rinnert

On behalf of the LHCb VELO & ST Groups

VERTEX 2015 Santa Fe, 1 – 5 June 2015

The LHCb Detector

More on tracking in Stefano's talk (up next)

The Vertex Locator (VELO)

- Retractable detector halves
- 21 R/Phi modules per half +4 R-type PU veto
- 2048 strips on each sensor
- Pitch varies from 40 μm to 100 μm
- Best hit resolution 4 μ m
- First strip at 8.2 mm
- Operates in secondary vacuum
- Bi-phase CO₂ cooling, Si at -10 °C
- Separated from beam vacuum by 300 μm thick Al foil

The Tracker Turicencis (TT)

- Silicon microstrip sensors, p-on-n by HPK
- Thickness 500 μm
- Strip Pitch 183 μm
- Readout strip length up to 37 cm \Rightarrow up to 60 pF
- ~144k readout channels
- Total area: 8 m²
- Sensors at ~ 8° C
- 99.7% working channels (Run I average)
- Resolution 53.4 μm

The Inner Tracker (IT)

- Silicon microstrip sensors, p-on-n by HPK
- Twelve layers
- Thickness 320 μ m (1 sensor, 11 cm) or 410 μ m (2 sensors 22 cm)
- Strip Pitch 198 μm
- ~130k readout channels
- stereo angles (xuvx) 0°,-5°,+5°,0°,
- Total area: 4.2 m²
- Sensors ar ~ 8° C
- 98.6% working channels (Run I average)
- Resolution 54.9 μm

Methods with and without beam:

- Current vs. temperature (IT)
- Changes of current vs. voltage (IV)
- Changes of effective depletion voltage
- Cluster finding efficiency

Leakage Current (VELO)

- Two contributions: bulk and surface current
- Surface contribution negligible after irradiation
- Bulk dominated before Bulk dominated after

Surface dominated before Bulk dominated after

Leakage Current (VELO)

 Measurement of the effective bandgap energy. $I(T) \propto T^2 exp(\frac{-E_g}{2kT})$

LHCb VELO & ST — VERTEX 2015 — Santa Fe, 1 - 5 June 2015

Leakage Current (VELO)

- IV-scans performed weekly in data taking periods
- Bulk currents increase with fluence as expected
- Occassional drops due to annealing

• Data normalised to a temperature of 8°C ($E_g = 1.21 \text{ eV}$)

Predicted Fluence (VELO)

- Good agreement with prediction
- Particle fluences well understood

Charge Collection Efficiency (VELO)

- Use reconstructed unbiased tracks
- Extrapolate to test sensor and record nearby charge
- Vary voltage between 40 and 250 V

Same concept for ST, scans are simultaneous.

Charge Collection Efficiency (VELO)

- Collect data for various bias voltages for each sensor
- Fit the MPV distribution
- Define effective depletion voltage (V_{ED}) as the voltage where MPV is 80% of maximum

Same concept for ST, scans are simultaneous.

V_{ED} Dependency on Fluence (VELO)

- V_{ED} decreases with fluence to a minimum of ~18 V for n-type sensors
- Inversion point is $10 15 \times 10^{12} n_{eq} \text{cm}^{-2}$
- After inversion n-in-n increase at a similar rate as n-in-p

Comparison with Hamburg Model

- Good agreement apart from inversion region
- No inversion observed for ST

VELO V_{ED} Predictions for Run 2

Sensor	V_{ED} at 4.4 fb ⁻¹ [V]	V_{ED} at 10 fb ⁻¹ [V]
R	172 ± 12	432 ± 30

- V_{ED} will no longer be uniform across sensors
- Different voltage steps in CCE scans
- Well below 500 V in worst case

Second Metal Layer (VELO)

- CFE depends on distance to routing lines
- Effect seems to reduce after type inversion
- No effect on track finding efficiency observed

Maintenance during LS 1

- The detectors have been kept cooled and monitored.
- Regular scheduled operations to ensure all is well.
- The VELO LV system has been refurbished.
- The IT adjusted to nominal position and a new alignment monitoring system has been installed.
- Maintenance of VELO cooling & vacuum system and new cooling plant for ST.
- Some challenging times with the VELO under Ne and no beam pipe attached.
- PVSS is now called WinCC/OA many changes/improvements to control infrastructure.

And more...

New ST Cooling Plant

- Cooling performace degraded over Run1, due to lubricant contaminating coolant.
- Manual recirculating necessary ervery 2-3 days.
- New Cooling plant installed for Run 2; better insulation needed.

IT Postion

- After installation of new beam pipe IT could be moved to its nominal position.
- New position monitoring system installed (BCAM).

LHCb VELO & ST — VERTEX 2015 — Santa Fe, 1 - 5 June 2015

VELO Maintenance Examples

- VELO under Ne w/o beampipe required installing mechanical support.
- Replaced LV bulk supplies with A3485 units to mitigate connector problems.
- VELO 2 (emergency spare) moved back upstairs.

TED

- Shots on transfer line beam absorber.
- Results in muon showers at LHCb in the upstream direction.
- Many parallel tracks, unlike collissions.
- Special timing settings.

SMOG

- Injection of Ne in the primary LHC vacuum at LHCb.
- Was done simultaneously with injection energy (450 GeV) collissions.
- No stable beams declared, so VELO was open.
- Allowed to power because beams were "quiet".

TED: IT Track Residuals

інсь

TED: VELO Alignment

Translation along x

LHCb VELO & ST — VERTEX 2015 — Santa Fe, 1 - 5 June 2015

SMOG: IT CLuster Distributions

SMOG: VELO Beam Monitor

LHCb VELO & ST — VERTEX 2015 — Santa Fe, 1 - 5 June 2015

- The LHCb silicon detectors have been maintained & monitored well during LS1.
- Radiation damage is well understood.
- Many improvements have been put in place over LS1.
- The detectors performed well during injection line tests and first collision runs.
- We will be recording data with stable beams this week!

VELO & ST are in good shape and ready for LHC Run 2

- The LHCb silicon detectors have been maintained & monitored well during LS1.
- Radiation damage is well understood.
- Many improvements have been put in place over LS1.
- The detectors performed well during injection line tests and first collision runs.
- We will be recording data with stable beams this week!

VELO & ST are in good shape and ready for LHC Run 2

Performance

Int. J. Mod. Phys. A 30 (2015) 1530022 J. Instrum. 9 (2014) P09007

Radiation Damage JINST 8 (2013) P08002

LHCb VELO & ST — VERTEX 2015 — Santa Fe, 1 - 5 June 2015