# The LHCb VELO Upgrade

#### Sophie Richards On behalf of the LHCb VELO Upgrade Group VERTEX 2015 June 1 2015, Santa Fe











#### Overview

- Introduction to LHCb detector
- Upgrade motivation
- Timeline
- Brief VELO overview
- Upgrade challenges
- Upgrade details
  - Sensors
  - VeloPix
  - Micro-channel cooling
  - RF foil
- Test beam
- Summary





# The LHCb Experiment

- Single arm spectrometer designed to search for New Physics by studying CP violation and rare decays of beauty and charm particles at LHC.
- Excellent vertex and momentum resolution, particle ID and flexible triggering







#### Why do we need to upgrade

- More statistics needed as no deviation has been observed from the Standard Model
- LHCb runs at a stable luminosity but may accept more from LHC
- LHCb runs at double the luminosity as it had been designed.
- Current detector is limited to 1 MHz full readout







#### Timeline

| Beam<br>Crossing            | 50 ns                                   |      |      |      | -    |     |                      | 25 ns |      |                         |     | -                          |                       | 25 ns |       |  |
|-----------------------------|-----------------------------------------|------|------|------|------|-----|----------------------|-------|------|-------------------------|-----|----------------------------|-----------------------|-------|-------|--|
| Start up                    | 2010                                    | 2011 | 2012 | 2013 | 2014 | 201 | L5                   | 2016  | 2017 | 20                      | )18 | 2019                       | 2020                  | 2021  | 2022+ |  |
| TeV                         | 0.9-7 8                                 |      |      | 8    |      |     |                      | 13-14 |      |                         |     |                            |                       |       |       |  |
| Instantaneous<br>Luminosity | 10 <sup>32</sup> 3-4 x 10 <sup>32</sup> |      |      | 32   | LS 1 |     | 4 x 10 <sup>32</sup> |       |      | LS 2<br>LHCb<br>Upgrade |     | 10 – 20 x 10 <sup>32</sup> |                       |       |       |  |
| Integrated<br>Luminosity    | 3 fb <sup>-1</sup>                      |      |      |      |      |     | ~5fb <sup>-1</sup>   |       |      |                         |     |                            | > 50 fb <sup>-1</sup> |       |       |  |

http://cds.cern.ch/record/1443882/files/LHCB-TDR-012.pdf





UPGRADE TOR

http://cds.cern.ch/ record/1624070/files/ LHCB-TDR-013.pdf

http://cds.cern.ch/record/1333091/files/LHCC-I-018.pdf

S.Richards VERTEX 2015





#### The current VELO

- 88 silicon sensors in a R-Φ design 300µm nin-n Si
- Micro strip technology that is only 8.1 mm from the beam
- Separated from primary vacuum by thin RF foil
- Active CO<sub>2</sub> cooling









## Changes for VELO

New VELO should have the same performance as the current VELO

- From micro-strips to pixels
- Thinned sensor and readout chips
- 5.1 mm from beam (was 8.2mm)
- Readout data from every bunch crossing
- CO<sub>2</sub> cooling in micro-channels etched in Si
- New RF Foil





# Challenges for the VELO upgrade

| Non uniform Radiation Exposure | 8 x 10 <sup>15</sup> n <sub>eq</sub> /cm <sup>2</sup> at the close edge<br>0.2 x 10 <sup>15</sup> n <sub>eq</sub> /cm <sup>2</sup> at outer edge |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| HV tolerance                   | 1000V after 50 fb <sup>-1</sup>                                                                                                                  |
| Readout data rate              | Approximately 33 track per event per<br>module<br>(LHC 40MHz)                                                                                    |
| Temperature operation          | Less than -20 degrees at the tip close to the beam                                                                                               |
| ASIC power consumption         | Less than 3W per ASIC and up to 36W per module                                                                                                   |



#### Silicon sensors



• Planar Silicon n-in-n or n-in-p

- 200 micron thickness
- 55 x 55 micron pixel size
- One tile is ~ 43 x 14 mm
- Testing sensors from HPK and Micron
  - 200 µm n-on-p is baseline
  - Micron : n-on-n and n-on-p
  - HPK n-on-p
  - Micron batch also includes more aggressive guard designs and wafers with 150 micron thickness







#### Modules

- 12 ASICs mounted on a L-shaped modules
- Four sensor tiles, two on each side of substrate
- Power and readout traces on Kapton flex
- Silicon substrate with etched micro-channels for evaporated CO<sub>2</sub> cooling







SCA/

1000

VELOPIX

sensor

#### VeloPix ASIC

sensor

400

Silicon

bumps

20um coverlay

50um kapton

15 um copper 25-50um adhesive

microchannels

VELOPIX

- MediPix→TimePix→TimePix3→VeloPix
- VeloPix designed by CERN MediPix group and Nikhef
- TimePix3 ASIC are currently used as a prototype in beam tests
- 256 x 256 pixels, gives ~ 14x14mm 200 active area
- 130nm CMOS technology
- Data driven readout
- Binary readout
- Zero suppressed data
- Fast front-end : Timewalk < 25ns
- Expected threshold ~1000e<sup>-</sup>

SCA/ GBT





# VeloPix challenges

- The hottest chips have approximately 600 (900) Mhits/s per chip
  - Grouping of pixel hits 2x4 super pixel (30% data reduction)
  - Increase output bandwidth
  - Optimize buffering
- Output bandwidth of VeloPix
  - Average 13Gbit/s ; peak 20Gbit/s
  - 4 links at ~ 5Gbit/s



Data rate [Gbit/s] for hottest module.





## Micro-channel cooling

- Evaporative CO<sub>2</sub> flows via micro-channels etched into Silicon substrate.
- Bring the coolant directly to the power dissipation areas.
- Keep the sensors at -20 degrees to reduce damage from radiation
- Less material, no CTE mismatch
- Channel cross-section 120 x 200  $\mu m^2$









# **RF** foil

- Separates Accelerator and VELO vacua
- Vacuum tight
- Electrically conductive
- Low mass
- Thermally stable and thermally conductive
- Radiation hard









# RF foil

- Material and fabrication
  - Aluminum (AlBeMet) < 300</li>
    μm thick top foil
  - 500  $\mu m$  thick walls
  - Milled from solid block of Aluminum
  - Local chemical thinning with NaOH after milling (under discussion)







#### Test beam



- Commissioned the TimePix3 telescope in July/August 2014 at CERN PS
- Successful test beam campaign at CERN SPS in November/October 2014 and May 2015
  - Characterization of prototype assemblies
  - High rate test of TimePix3
  - Irradiated sensors were also tested







## What did we test?

- Overall 14 Devices under test so far, 8 were irradiated
  - Two triples, 12 singles
- 5 Micron and 9 HPK
- 5 at JSI and 3 at KIT, triples from KIT
- 8 Telescope planes that were commissioned in July
- We have more test beams and more sensors to test in the coming year





#### Test beam

#### S14 non-uniformly irradiated at KIT to maximum fluence of 2 x10<sup>15</sup> 1MeV n<sub>eq</sub> cm<sup>-2</sup>







# Some prelim results

- Non-uniformly irradiated sensor
- Charge collection efficiency in the highly irradiated corner(red) and a lower(green) irradiated section.









#### Summary

- Velo upgrade installation in 2019
- Luminosity 2 x 10<sup>33</sup> (5 times more than current VELO)
- Planar Silicon pixels, 55 x 55  $\mu$ m<sup>2</sup>
- VeloPix ASICs
- Active area 5.1mm from beam
- Evaporative CO<sub>2</sub> cooling in Silicon micro-channel substrate
- 300  $\mu$ m thick RF-box milled from solid block of Al









NETWORKING FOR KNOWLEDGE

Thank you to Colston Research Society and University of Bristol Alumni Society for travel funding.





THE ALUMNI FOUNDATION





#### Backup





#### Data acquisition

- Differential copper link from ISIC inside of vacuum tank
- Optical link ~300 m long
- 12 x 10 Gigabit Ethernet outputs
- CPU Farm
- DAQ module TELL40, common for LHCb, ATCA standard
- Data flow of whole VELO ~ 2.5 Terabit/s
- All signals coming from sensors have a timestamp which need to be arranged into an event

