Rationale for thresholds on MQW/MBW magnets

V. Raginel, B. Auchmann, D. Wollmann

MQW normal conducting quadrupole magnet

976 REF	· · · · · · · · · · · · · · · · · · ·	Magnet type	MQWA	MQWB
		Magnetic length	3.1 m	
(12(13)14)		Beam separation	224 mm	
		Aperture diameter	46 mm	
NOTE 4 WINT +		Operating temperature	<mark>< 65° C</mark>	
		Nominal gradient	35 T/m	30 T/m
		Nominal current	710 A	600 A
NOTE 3		Inductance	28 mH	
		Resistance	37 mΩ	
		Conductor V section	20.5 x 18.0 mm ² inner poles	
	NOTE 1-	Colluctor A-section	17.0 x 17.0 mm ² outer poles	
	Cooling hole diameter	7 mm inner poles,		
		8 mm outer poles		
	Number of turns per magnet	8 x 11		
	A A A A A A A A A A A A A A A A A A A	Minimum water flow	28 1/min	
		Dissipated power at Inom	19 kW	14 kW
800		Mass	11700 kg	

Cross-section of the MQW twin aperture normal conducting matching quadrupole.

MBW normal conducting dipole magnet

Figure 8.14: Cross-section of the normal conducting separation dipole MBW.

Slow losses, cooling limitation

,

Cooling power
$$\frac{dQ}{dt} = C_p v_s a_c \rho \Delta T_s$$

 $C_p = 4179 J k g^{-1} K^{-1};$
 $\rho = 10^3 k g m^{-3}$

Thermo-switch on the coil set to 65 °C

Water and Coils have approximately same temperature (+/- 2°C) (from P. Thonet)

	MQWA (19 kW in Nominal Op.)	MQWB (14 kW in Nominal Op.)	MBW (29 kW)
Water Flow*	22I/min	22l/min	20 l/min
Water Temperature*	20 to 30 °C	20 to 30 °C	20 to 30 °C
ΔT Water /Copper(°C)	12.4	9.1	21
Max Power evacuated (kW) for ΔT = 35 C	54	54	49
Max Power evacuated (kW)induced by beam losses	35	40	20

* Operational values confirmed by D. Tommasini and P. Thonet

Orbit Bump Scenario: To calculate a maximum loss rate, we need an estimation of the Average losses on the whole MBW and MQW per lost proton

Normal Cleaning Scenario at 7 TeV

Study done at 3.5 TeV: Update for 7 TeV required.

By extrapolation at 7 TeV: 500 kW hitting primary collimators. Highest heat load on first MBW (~20 kW) and MQW (~15 kW).

Total power deposition per element along beam line for IR7 20 Nominal case Peak loss rate (10s): 4.3x10¹¹p/s 15 Total Power (kW) to withstand for 10s 10 **FLUKA** team 5 MOWAKA MOUNDST MONACSI MONREI Cocococo Alemanico CSCARCHING MOWARSI MOWNASSI ACSGRAT ACSGRST MOMADE MOWACS CGGR# Element

241 KW hitting the beam 1 collimators for 0.2h beam lifetime @ nominal intensity (i.e. 2808 bunches with 1.15 10¹¹p each)

Fast losses on vacuum pipe and coils

Copper properties: Cp = 0.385 J/(g K); $\rho = 8.96g/cm3$

- \blacktriangleright Melting point (ΔT^{1040} °C, T 1100 °C) => ΔE = 3.6 kJ/cm3
- From TT40 Experiment (1.32 10^{12} protons @450 GeV,~500 °C) used as input for the Setup Beam Flag => $\Delta E = 1.9 \text{ kJ/cm3}$
- > Copper at T=100 °C (Δ T=60 °C) => Δ E = 0.21 kJ/cm3

Thresholds Proposition: Coils at $\Delta E = 0.21 \text{ kJ/cm3}$ & Beam pipe at $\Delta E = 1.9 \text{ kJ/cm3}$

To be seen with the BLM response