BLM thresholds for MQW magnets

V. Raginel, B. Auchmann, D. Wollmann

BLM Threshold Working Group meeting, 24/02/2015

MQW normal conducting quadrupole magnet

-	976 KF	Magnet type	MQWA	MQWB		
ti		Magnetic length	3.1 m			
		Beam separation	224 mm 46 mm			
		Aperture diameter				
		Operating temperature	<mark>< 65° C</mark>			
ļ l		Nominal gradient	35 T/m	30 T/m		
650 REF		Nominal current	710 A	600 A		
	NOTE 3 NOTE 3	Inductance	28 mH			
		Resistance	37 mΩ			
		Conductor X-section	20.5 x 18.0 i	20.5 x 18.0 mm ² inner poles		
Ψ			17.0 x 17.0 i	17.0 x 17.0 mm ² outer poles		
(10)		Cooling hole diameter	7 mm inner poles,			
			8 mm outer poles			
		Number of turns per magnet	8 x 11			
		Minimum water flow	28 1/min			
,		Dissipated power at Inom	19 kW	14 kW		
	800	Mass	11700 kg			

Cross-section of the MQW twin aperture normal conducting matching quadrupole.

BLM Threshold for Slow losses

Scenario: 3.5 TeV vertical orbit bump on the lower part of the beam pipe 1 meter upwards the middle of the MQWA.E5R7

- Coils Temperature < 65 °C (Thermo-switch to protect the coils)</p>
- > Water Cooling has to cope with **Dissipated power, Collimation losses** and **Orbit bump losses**

Normal Cleaning Scenario at 3.5 and 7 TeV

 <u>Study done at 3.5 TeV</u>: Update for 7 TeV required.

By extrapolation at 7 TeV: 500 kW hitting primary collimators. Highest heat load on first MBW (~20 kW) and MQW (~15 kW).

241 KW hitting the beam 1 collimators for 0.2h beam lifetime @ nominal intensity (i.e. 2808 bunches with 1.15 10¹¹p each) Total power deposition per element along beam line for IR7 20 Nominal case Peak loss rate (10s): 4.3x10¹¹p/s 15 Total Power (kW to withstand for 10s 10 **FLUKA** team 5 MOWAER MOWNDST NOWRCE MONIESI Cocococo Alemanico CSCARCHING MOWABSI MOWRASI ACSGRGT AC-SGRST MOMADA MONRC: Element

Orbit bump scenario

At **3.5 TeV**, values normalized per impacting proton on the beam pipe

BLM Signal: 7.4844e-14 Gy

Integrated Energy Deposition in the whole magnet: 261.4 GeV

Integrated Energy Deposition in the most impacted coil (Lower one both cross sections) : 6 GeV

At **7** TeV, scale value by a factor 2

Orbit bump scenario – Loss rate / BLM signals

	Whole MQW magnet				Most exposed coil	
	3.5 TeV		7 TeV		3.5 TeV	7 TeV
Scenario including collimation losses	No	Yes	No	Yes	No	No
Max Power [kW] *	49	41	35	20	6.1	4.3
Max. Loss rate [p+/s] *	1.17 E12	9.87E11	4.18E11	2.39E11	6.35 E12	2.27E12
Corresponding BLM signals [Gy/s]	8.73E-02	7.39E-02	6.25E-02	3.57E-02	4.75E-01	3.40E-01

* Max power deposit into magnet and/or coil and loss rate to keep T_{coil} < 65 °C with nominal cooling

Actual master threshold 7E-02 Gy/s

Scenario including collimation losses, BLM signals due to collimation losses not included (input from FLUKA needed)

Fast losses on vacuum pipe and coils

Copper properties: Cp = 0.385 J/(g K); $\rho = 8.96g/cm3$

- > Melting point ($\Delta T \sim 1040^{\circ}C$, T $\sim 1100^{\circ}C$) => ΔE = 3.6 kJ cm⁻³
- From TT40 Experiment (1.32 10¹² protons @450 GeV,~500 °C) used as input for the Setup Beam Flag and Peak energy deposition in the orbit bump case (4.5 GeV/cm⁻³ @3.5 TeV)
 => ΔE = 1.9 kJ cm⁻³, BLM signal 0.2 Gy (2.64E+12 p+ @3.5 TeV, 1.32E+12 p+ @7 TeV)
- Copper at T=100 °C (ΔT=60 °C)
 ΔE = 0.21 kJ cm⁻³, BLM signal 0.02 Gy (2.9E11 p+ @ 3.5 TeV; 1.5 E11 p+ @ 7 TeV)

For 100 °C and 500 °C, BLM signal above maximum threshold until 2.56 ms integration time

Old vs. New inputs for BLM Thresholds

Input for Old Thresholds:	3.5 TeV 7	TeV				
BLM Response [Gy/p+]	5.33E-12	1.00E-11				
Fast Loss [p+]	5.40E+11	1.00E+10				
Steady-state Loss [p+/s]	5.40E+10	1.00E+09				
Fast Loss Threshold [Gy]	2.88E+00	1.00E-01				
Steady-state Loss Threshold [Gy/s]	2.88E-01	1.00E-02				
Input for New Thresholds:	3.5 TeV	7	' TeV			
BLM Response [Gy/p+]	7.48E-14		1.50E-13			
Fast Loss [p+]	2.91E+11	2.64E+12	1.46E+11	1.32E+12	100 C	500 C
Steady-state Loss [p+/s]	1.17E+12	9.87E+11	4.18E+11	2.39E+11	w/o collim	with collim
Fast Loss Threshold [Gy]	2.18E-02	1.97E-01	2.18E-02	1.97E-01	100 C	500 C
Steady-state Loss Threshold [Gy/s]	8.73E-02	7.39E-02	6.25E-02	3.57E-02	w/o collim	with collim