

Higgs to ZZ* at 1.4 TeV

G. Milutinovic-Dumbelovic

P.Roloff, I. Bozovic-Jelisavcic

CLICdp WG Analysis Meeting, 25th February 2015

Overview

• Signal and background x-sec

Analysis strategy

MVA

• Final results

Conclusions

Signal process

Signal: 2 jets + 2 leptons (muons, electrons or taus) + missing energy

Higgs coupling:

$$\frac{g_{HWW}^2 \cdot g_{HZZ}^2}{\Gamma_{\! H}}$$

- BR(H \rightarrow ZZ*) \approx 2.89% \Rightarrow $\sigma_{HWW} \times$ BR \approx 7.05 fb
- BR($Z\rightarrow e+e-$, $Z\rightarrow \mu+\mu-$, $Z\rightarrow \tau\tau$) $\approx 10\%$
- $\hspace{0.5cm} \blacksquare \hspace{0.5cm} N_s(ZZ^* {\longrightarrow} qqe + e^-, \, ZZ^* {\longrightarrow} qq\, \mu + \mu^-, \, ZZ^* {\longrightarrow} \, qq \, \tau\tau \, \,) \approx 1500/1.5 \, \, ab^{-1}$

Signal

The reconstruction is based on the pair of jets or leptons (muons, electrons or taus) with the mass closest to the mass of real Z.

Higgs mass

Signal and bck x-sec

Process	$\sigma[fb]$
$e^+e^- \rightarrow H\nu_e \overline{\nu_e}, H \rightarrow ZZ-> qqll$	0.995
$e^+e^- \rightarrow qqv_e \overline{v_e}$	788
$e^+e^- \rightarrow qqqqv_e \overline{v_e}$	24.7
$e^+e^- \rightarrow H\nu_e \overline{\nu_e}, H \rightarrow WW$	56.4
$e^+e^- \rightarrow qq$	4009.5
$e^+e^- \rightarrow qqqq$	1245.1
$e^+e^- \rightarrow qqqqll$	71.7
$e^+e^- \rightarrow qqqqlv$	115.3
$e^+e^- \rightarrow Hv_e \overline{v_e}, H \rightarrow bb$	136.94
$e^+e^- \rightarrow qqll$	2725.8
$e^+e^- \rightarrow H\nu_e \overline{\nu_e}, H \rightarrow ZZ - > qqqq/llll$	3.51
$e\gamma \rightarrow qq\nu$	29873.5
$e\gamma \rightarrow qqe$	16898.9
$\gamma\gamma \rightarrow qq$	76782.8
$\gamma\gamma \rightarrow qqll$	13829.7

Analysis strategy

Isolated Lepton Finder

Lepton identification:

- Remove all tracks with E < 6 GeV
- Energy contained in a cone around the track ($\cos \theta < 0.995$)
- Cut at IP < 0.02mm
- Ratio of track energy deposition in ECAL and HCAL (0.02< μ ECAL to HCAL fraction<0.3, e⁻ ECAL to HCAL fraction>0.94)
- Apply isolation criteria

Tau Finder

Steps to reconstruct a tau:

- 1. Look for tau 'seed' (a high energy, charged track)
- 2. Add all particles within search cone to seed
- 3. Check number of charged tracks, isolation, tau mass

Initial pT cut for all tracks > 4 GeV pT cut for seed > 10 GeV Impact parameter R_0 : 0.01 - 0.5 Search cone angle < 0.15 rad Isolation energy < 3 GeV Ring particles < 5 Invariant mass < 2. GeV/ c^2

37% efficiency in reconstruction of tau pair

$\gamma\gamma \rightarrow qqll$ background

$\gamma\gamma \rightarrow qqll$ background

MVA analysis

• TMVA trained with 17 variables on total background except $\gamma\gamma \rightarrow qqll$

List of variables for TMVA:

 $\begin{array}{l} m_{Z1,}\,m_{Z2,}\,-log\,(y_{34}),\,-log(y_{23}),\,-log(y_{12}),\,P(b)^{jet1},\,P(b)^{jet2},\,P(c)^{jet1},\,P(c)^{jet2},\,E_{vis},\\ p_{Tmiss},\,\theta_{H},\,m_{H},\,m_{ll},\,m_{qq}\,\,,\,E_{vis1}\,\,,\,N_{PFOs} \end{array}$

MVA result

- Overall signal efficiency 30.4%
- $\gamma\gamma \rightarrow$ qqll background completely removed after MVA

$$\frac{\Delta\sigma}{\sigma}$$
 ~5.6%

Result

$\mathbf{\epsilon}_{\mathrm{s}}$	30%
$\sigma_{\text{WWH}} \times \text{BR}(\boldsymbol{H} \to \boldsymbol{Z}\boldsymbol{Z} \to \boldsymbol{q}\boldsymbol{q}\boldsymbol{l}\boldsymbol{l})$	0.995 fb
$\delta(\sigma_{WWH} \times BR(\boldsymbol{H} \to \boldsymbol{Z}\boldsymbol{Z} \to \boldsymbol{q}\boldsymbol{q}\boldsymbol{l}\boldsymbol{l}))$	5.6%

- Uncertainty of the measurement is dominated by the backgrounds with large x-sections and limited efficiency in tau pair reconstruction which reduces the overall gain in statistics.
- One should not that no polarization is included that can boost statistics by a factor 2.

Conclusion

- The status of the $H \rightarrow ZZ^* \rightarrow qqll$ analysis is being presented
- All relevant SM background processes are considered, and beam-induced background from gamma gamma->hadrons interactions is overlaid to the physics events.
- It has been shown that $BR(H \rightarrow ZZ)$ can be measured with a statistical accuracy of 5.6%.
- Limited efficiency in tau pair reconstruction reduces the overall gain in statistics.