

$H{\rightarrow}$ WW* fully hadronic in HZ at CLIC at 350 GeV

status report Mila Pandurović

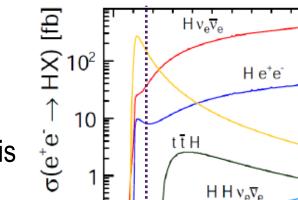
M. Pandurović, CLICdp Analysis WG

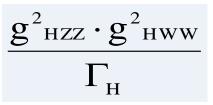
10. February 2015.

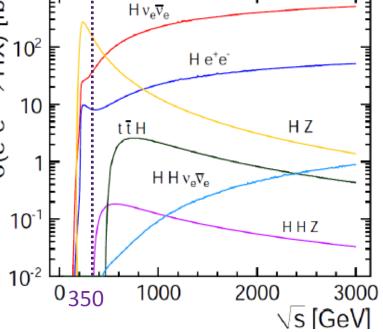
Analysis recap

Measure the statistical uncertainty of the couplings

- \Box Considering only fully hadronic H \rightarrow WW* \rightarrow qqqq decays
 - \Rightarrow complete reconstruction of Higgs invariant mass
- \Box BF (H \rightarrow WW \rightarrow qqqq)~10%

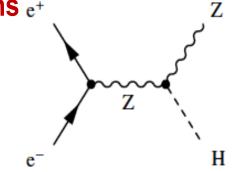

This talk:


6 jets


Applied b-tag/c-tag to 6 jet hypothesis aiming to furhter reduce ttbar

4 jets

redid both channels


P & XOVP VIH(X

Signal

6 jets

□ Considering two types of final states: 4jets +2 leptons e⁺

Central signature for jets and leptons

Process	BF [%]	σ[fb]	Events in 0.5 fb ⁻¹	Events generated
$e^+e^- \rightarrow HZ$		134	68.000	
$H \rightarrow WW \rightarrow qqqq$	9.800	_		
$Z \rightarrow e^+ e^-$	3.363	0.453	226	50873
$Z ightarrow \mu^+ \mu^-$	3.366	0.454	227	66377
$Z \rightarrow qq$	69.910	9.161	4580	61178

Backgrounds

Process	σ[fb]	Events in 0.5 fb ⁻¹	Events generated
Other Higgs decays	93	46311	1.397.072
$e^+e^- ightarrow qqqq$	5847	2.923.500	1.440.500
$e^+e^- ightarrow qqll$	1704	852.000	488.500
$e^+e^- \to q q l \nu$	5914	2.957.000	1.437.500
$e^+e^- ightarrow qq u u$	325	162.300	306.500
$e^+e^- \to H\nu\nu$	52	26.700	500.000
$e^+e^- \rightarrow \ t\bar{t}$	450	225.000	20979+196911
$e^+e^- \to WWZ$	10	5.000	39880

- Events are generated using WHIZARD v1.95 (ISR and CLIC beam spectrum)
- Assuming m_H=126 GeV
- Full simulation using CLIC_ILD detector model

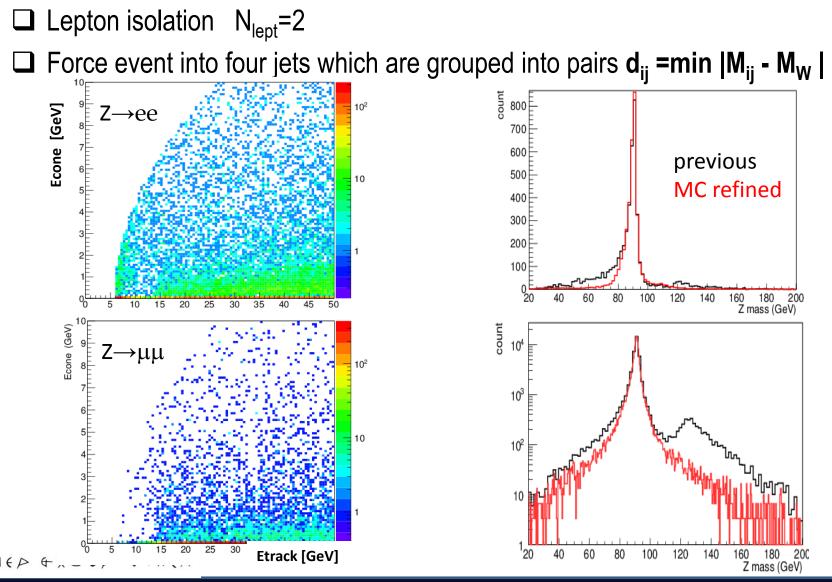
Analysis strategy

- Lepton isolation
- Jet clustering: forcing event into 4/6 jets
- Vertex finding: primary and secondary
- Flavor tagging
- Preselection
- MVA classification

Kinematical variables

- Invariant masses of Higgs, Z and W bosons: m_H, m_z, m_w, m_{w*}.
- Event shape variables: thrust, sphericty, aplanarity, oblateness.
- . Jet transitions: $-\log_{10}(y_{12}) (y_{23}, y_{34}, y_{45}, y_{56}, y_{67})$
- Angle between the jets that comprise: real W, Z : θ_{partW} , θ_{partZ}
- . Number of PFO's: **NPFO** , θ_{lept}
- . Visible energy: **E**_{vis},
- Transverse momentum of jets that comprise Higgs **P**_{tHiggsJets}
- b/c tag probablity for 2 jet hypothesis: btag, ctag
- Multijet tagging: btag_i, ctag_i values i=1,6

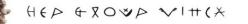
M. Pandurović, CLICdp Analysis WG


Lepton isolation

- Isolation based on energy of a lepton track, and energy contained in a cone around the track- refined with MC truth matching
- For electron/muon separation: ratio of the energy deposited in the HCAL and ECAL

	Lepton Isolation		
Cosine Cone Isolation angle	0.995		
Polynomial isolation	E _{cone} < -0.005 E _{tr} ² + 5.0 E _{tr} - 30.0		
	electrons	muons	
ECAL/(HCAL+ECAL)	0.9	0.5	
Etot/P min	0.7	0.4	
Etot/P max	1.2	0.7	

4 jet final state



M. Pandurović, CLICdp Analysis WG

10. March 2015.

	Process	σ[fb]	Efficiency [%]	$\sigma_{_{\text{pres}}}$ [fb]	
80 GeV <m<sub>z< 110 GeV</m<sub>	signal	0.453	48.4	0.22	
45 GeV < m _w < 95GeV	HZ back.	4.13	5.95	0.25	
100 GeV< m _н <140 GeV	$e^+e^- ightarrow qqqq$	5847	<10-4	1	
-log(y45)<4.0	$e^+e^- \to qqll$	1704	0.246	4.19	
-log(y23)<3.0	$e^+e^- \to q q l \nu$	5914	1.2 10 ⁻³	0.07	
jetPt > 20 GeV NPFO>20	$e^+e^- \to q q \nu \nu$	325	<10 ⁻³	1	
100 < E _{vis} < 300 GeV	$e^+e^- \to H \nu \nu$	52	<10 ⁻³	1	
btag <0.9	$e^+e^- \to \ t\bar{t}$	450	0.012	0.06	
Thrust <0.9	$e^+e^- \to WWZ$	10	0.3	0.03	
100 <e<sub>vis <200 GeV</e<sub>					

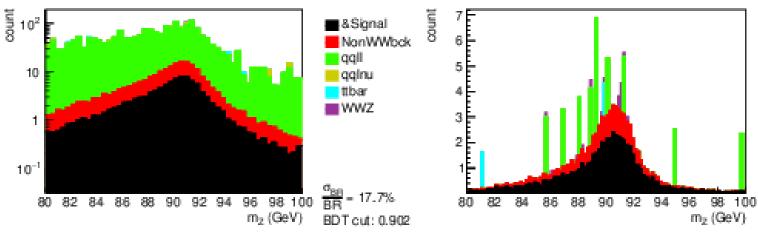
Minimal set to completely remove high cross-section backgrounds (qqqq,qq $\nu\nu$)

MVA analysis

4 jet Z→ee final state

- After the preselection the most difficult backgrounds other Higgs decays, qqll
- □ BDT input variables:
- . m_H, m_Z, m_W, m_{W*}
- thrust, sphericty, aplanarity, oblatness
- NPFO, Evis, PtOfHiggsJets
- $-\log_{10}(y_{12}) (y_{23}, y_{34}, y_{45}, y_{56}, y_{67})$
 - $\boldsymbol{\theta}_{\mathsf{partW}}$, $\boldsymbol{\theta}_{\mathsf{el}}$

•


•

btag, ctag variables

Results

4 jet Z→ee final state

After preselection

After final selection

RESULTS				
Total signal efficiency	27.9 %			
Number of events final	63			
$\frac{\Delta \sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$	17.7%			

Uncertainty is dominated by small signal cross-section

HEP & XOVP VIH(X

Preselection

4 jet $Z \rightarrow \mu \mu$ final state

	Process	σ[fb]	Efficiency [%]	$\sigma_{_{\text{pres}}}$ [fb]	
	signal	0.454	86.8	0.394	
	HZ back.	4.13	78.4	3.24	
70 GeV <m<sub>z< 110 GeV</m<sub>	$e^+e^- \to qqqq$	5847	1.5 10-4	1	
	$e^+e^- \to qqll$	1704	1.96	33.46	
	$e^+e^- \to q q l \nu$	5914	0.14	0.81	
	$e^+e^- \to qq\nu\nu$	325	<10 ⁻⁵	1	
	$e^+e^- \to H \nu \nu$	52	0.1	1	
	$e^+e^- \to \ t\bar{t}$	450	0.44	1.98	
	$e^+e^- \to WWZ$	10	2.9	0.29	

Preselection set targeted to completely remove high cross-section backgrounds

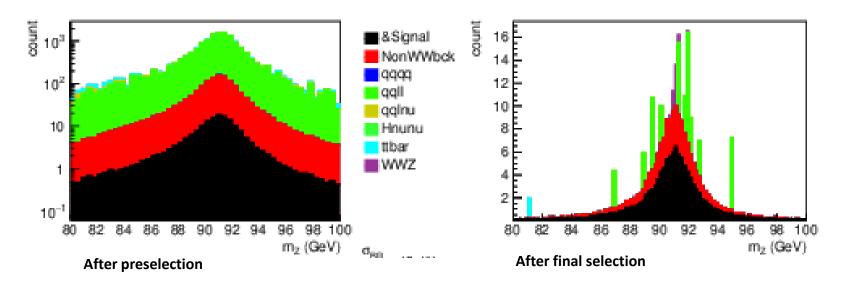
MVA analysis

- 4 jet $Z \rightarrow \mu \mu$ final state
- After the preselection the most difficult backgrounds other Higgs decays, qqll
 - m_H, m_Z, m_W, m_{W*}
- thrust, sphericty, aplanarity, oblatness
- NPFO, Evis, PtOfHiggsJets
- -log₁₀(y₁₂) (y₂₃ ,y₃₄, y₄₅ ,y₅₆, y₆₇)
- $\boldsymbol{\theta}_{\mathsf{partW}}$, $\boldsymbol{\theta}_{\mathsf{el}}$

٠

•

•


•

btag, ctag variables

Results

4 jet $Z \rightarrow \mu \mu$ final state

RESULTS			
Total signal efficiency 0.55%			
Number of events final	125		
$\frac{\Delta \sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$	13.1%		

Uncertainty is dominated by small signal cross-section

HEP € \$0\$P VIH(X)

6 jet final state

 \Box Lepton isolation N_{lept}=0

- ❑ After the lepton isolation we force event into six jets which are grouped into pairs to form H, W, Z.
- □ The combination which minimizes the chi2 is chosen:

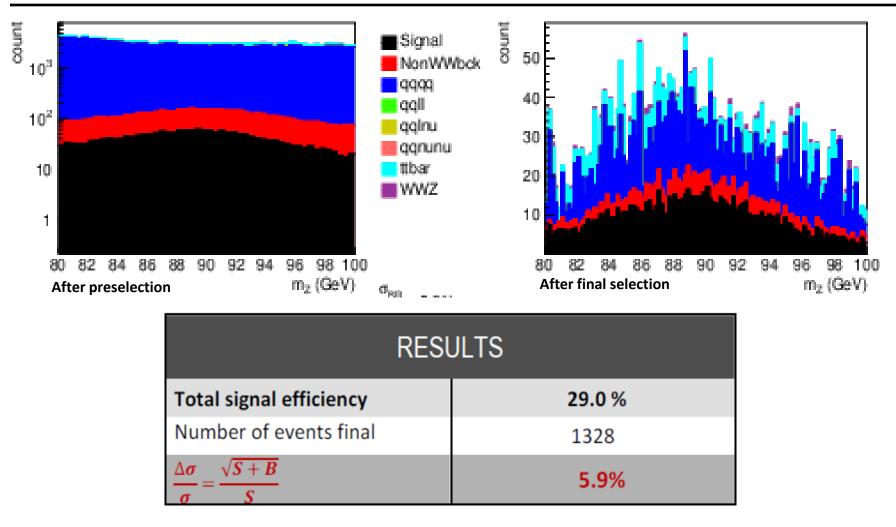
$$\chi^{2} = \frac{\left(M_{ij} - M_{W}\right)^{2}}{\sigma^{2}_{W}} + \frac{\left(M_{kl} - M_{Z}\right)^{2}}{\sigma^{2}_{Z}} + \frac{\left(M_{ijmn} - M_{H}\right)^{2}}{\sigma^{2}_{H}}$$

Preselection

6 jet final state

	Process	σ[fb]	Efficiency [%]	σ_{pres} [fb]
40 GeV< m _z	signal	9.16	70.9	6.5
Evis>250.	HZ back.	84.23	16.5	13.9
NPFO>50	$e^+e^- \to qqqq$	5847	18	1056.9
y12<2.0 y23<2.6	$e^+e^- \to qqll$	1704	0.046	1
y34<3.0 y45<3.5	$e^+e^- \to q q l \nu$	5914	0.01	1
y56<4.0	$e^+e^- \to q q \nu \nu$	325	0.001	1
pfo_thrust<0.9	$e^+e^- \to H\nu\nu$	52	0.0001	1
btag2 < 0.9	$e^+e^- \to \ t\bar{t}$	450	18.9	85.5
	$e^+e^- \to WWZ$	10	19.7	2.0

Minimal set to completely remove high cross-section backgrounds (qqll qql ν)


6 jet final state

- After the preselection the most difficult backgrounds
 ttbar, other Higgs decays,qqqq
- Optimizing set of the input variables from $32 \rightarrow 26$ final ones
- . m_H, m_Z, m_W, m_{W*}
- thrust, sphericty, aplanarity
- NPFO, Evis, PtOfHiggsJets
- $-\log_{10}(y_{12}) (y_{23}, y_{34}, y_{45}, y_{56}, y_{67})$
 - $\boldsymbol{\theta}_{\mathsf{partW}}$, $\boldsymbol{\theta}_{\mathsf{partZ}}$
 - btag_i, i=1,2,3,6 ctag_i i=1,3,6 (tagging of 6 jets)

•

Results

6 jet final state

Uncertainty is dominated by high cross-section backgrounds (qqqq, tt)

♣ HEP EROVP VIH(X
M. Pandurović, CLICdp Analysis WG

Summary

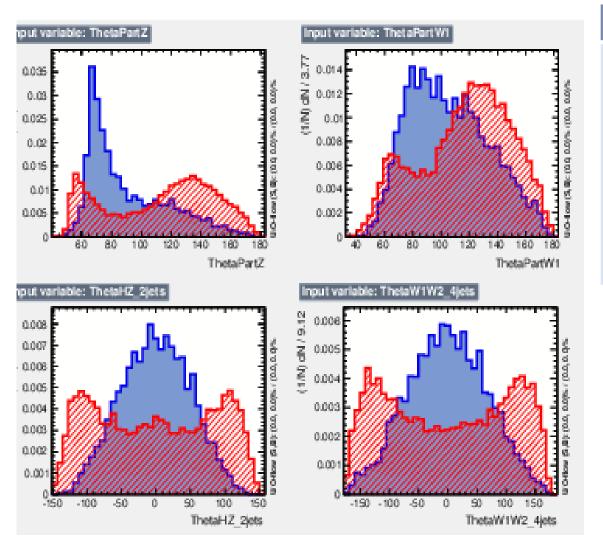
Steps added:

MC truth matching done: refined lepton isolation ttbar and WWZ background added multijet hypothesis (6) b/c tagging

Semileptonic channels:
 Electron channel : 17.7 %
 Muon channel : 13.1 %

□ Hadronic decay channel:

Hadronic channel : 5.9 % (30 % signal efficiency)



END

M. Pandurović, CLICdp Analysis WG

10. March 2015.

Variables ANGLES

- 1. ThetaPartW1 FORCE EVENTS INTO 6 jets the angle between two jets that consitute W real
- 2. ThetaHZ_2jets FORCE EVENTS INTO 2 jets the angle between H and Z