$\mathrm{H} \rightarrow \mathrm{WW}^{*}$ fully hadronic in HZ at CLIC at 350 GeV

status report
Mila Pandurović

$H \in P G X O 凶 \perp V I H C *$
M. Pandurović, CLICdp Analysis WG
10. February 2015.

Analysis recap

Measure the statistical uncertainty of the couplings
Considering only fully hadronic $\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{qqqq}$ decays

$$
\frac{\mathrm{g}_{\mathrm{HzZ}}^{2} \cdot \mathrm{~g}_{\mathrm{HWw}}^{2}}{\Gamma_{\mathrm{H}}}
$$

\Rightarrow complete reconstruction of Higgs invariant mass
$\square \mathrm{BF}(\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{qqqq}) \sim 10 \%$
This talk:
6 jets
Applied b-tag/c-tag to 6 jet hypothesis aiming to furhter reduce ttbar 4 jets
redid both channels

Signal

\square Considering two types of final states：4jets＋2 leptons e^{+} 6 jets
\square Central signature for jets and leptons

Process	$\mathrm{BF}[\%]$	$\sigma[\mathrm{fb}]$	Events in $0.5 \mathrm{fb}^{-1}$	Events generated
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{HZ}$		134	68.000	
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{qqqq}$	9.800			
$\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$	3.363	0.453	226	50873
$Z \rightarrow \mu^{+} \mu^{-}$	3.366	0.454	227	66377
$Z \rightarrow q q$	69.910	9.161	4580	61178

Backgrounds

Process	$\sigma[\mathrm{fb}]$	Events in $0.5 \mathrm{fb}{ }^{-1}$	Events generated
Other Higgs decays	93	46311	1.397 .072
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q q q q}$	5847	2.923 .500	1.440 .500
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q q l l}$	1704	852.000	488.500
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q q l v}$	5914	2.957 .000	1.437 .500
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q q} \boldsymbol{v} \boldsymbol{}$	325	162.300	306.500
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{H v v}$	52	26.700	500.000
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{t \overline { t }}$	450	225.000	$20979+196911$
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{W W Z}$	10	5.000	39880

－Events are generated using WHIZARD v1．95（ISR and CLIC beam spectrum）
－Assuming $\mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}$
－Full simulation using CLIC＿ILD detector model

Analysis strategy

- Lepton isolation
- Jet clustering: forcing event into 4/6 jets
- Vertex finding: primary and secondary
- Flavor tagging
- Preselection
- MVA classification

Kinematical variables

Invariant masses of Higgs，Z and W bosons：$m_{H}, m_{Z}, m_{W^{*}}, m_{W^{*}}$
Event shape variables：thrust，sphericty，aplanarity，oblateness．
Jet transitions：$\quad-\log _{10}\left(\mathrm{y}_{12}\right)\left(\mathrm{y}_{23}, \mathrm{y}_{34}, \mathrm{y}_{45}, \mathrm{y}_{56}, \mathrm{y}_{67}\right)$
Angle between the jets that comprise：real W，Z ：$\theta_{\text {partW }}, \theta_{\text {partz }}$
Number of PFO＇s：NPFO ，$\theta_{\text {lept }}$
Visible energy： $\mathrm{E}_{\text {vis，}}$
Transverse momentum of jets that comprise Higgs $\mathbf{P}_{\text {thiggsjets }}$
b／c tag probablity for 2 jet hypothesis：btag，ctag
Multijet tagging： btag $_{i}$, ctag $_{i}$ values $\mathrm{i}=1,6$

Lepton isolation

－Isolation based on energy of a lepton track，and energy contained in a cone around the track－refined with MC truth matching
－For electron／muon separation：ratio of the energy deposited in the HCAL and ECAL

	Lepton Isolation	
Cosine Cone Isolation angle	0.995	
Polynomial isolation	$\mathrm{E}_{\text {cone }}<\mathbf{- 0 . 0 0 5} \mathrm{E}_{\mathrm{tr}}{ }^{2}+\mathbf{5 . 0} \mathrm{E}_{\mathrm{tr}}-\mathbf{3 0 . 0}$	
electrons	muons	
ECAL／（HCAL＋ECAL）	0.9	0.5
Etot／P min	0.7	0.4
Etot／P max	1.2	0.7

4 jet final state

\square Lepton isolation $\mathrm{N}_{\text {lept }}=2$
\square Force event into four jets which are grouped into pairs $\mathrm{d}_{\mathrm{ij}}=\min \left|\mathrm{M}_{\mathrm{ij}}-\mathrm{M}_{\mathrm{w}}\right|$

	Process	$\sigma[\mathrm{fb}]$	Efficiency［\％］	$\sigma_{\text {pres }}[\mathrm{fb}]$
$80 \mathrm{GeV}<\mathrm{m}_{\mathrm{z}}<110 \mathrm{GeV}$	signal	0.453	48.4	0.22
$45 \mathrm{GeV}<\mathrm{m}_{\mathrm{w}}<95 \mathrm{GeV}$	HZ back．	4.13	5.95	0.25
$100 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}<140 \mathrm{GeV}$	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q q q q}$	5847	＜10－4	1
$-\log (\mathrm{y} 45)<4.0$	$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow$ qqall	1704	0.246	4.19
$-\log (\mathrm{y} 23)<3.0$	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ qqlv	5914	1.210^{-3}	0.07
jetPt＞ 20 GeV NPFO＞20	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q q v v}$	325	$<10^{-3}$	1
$100<\mathrm{E}_{\text {vis }}<300 \mathrm{GeV}$	$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{H v v}$	52	$<10^{-3}$	1
btag＜0．9	$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{t} \overline{\mathbf{t}}$	450	0.012	0.06
Thrust＜0．9 $100<\mathrm{E}_{\text {vis }}<200 \mathrm{GeV}$	$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow$ WWZ	10	0.3	0.03

Minimal set to completely remove high cross－section backgrounds（qqqq，qqvv）
\square After the preselection the most difficult backgrounds other Higgs decays，qqII
\square BDT input variables：
$m_{H}, m_{Z}, m_{W}, m_{W^{*}}$
thrust，sphericty，aplanarity，oblatness
－NPFO，Evis，PtOfHiggsJets
－$-\log _{10}\left(y_{12}\right)\left(y_{23}, y_{34}, y_{45}, y_{56}, y_{67}\right)$
$\theta_{\text {partW }}, \theta_{\text {el }}$
btag，ctag variables

HEP \＆又O凶メVIHC＊

Results

4 jet $\mathrm{Z} \rightarrow$ ee final state

After preselection

After final selection

RESULTS

Total signal efficiency	$\mathbf{2 7 . 9} \%$
Number of events final	63
$\frac{\Delta \sigma}{\sigma}=\frac{\sqrt{S+B}}{S}$	$\mathbf{1 7 . 7 \%}$

Uncertainty is dominated by small signal cross-section

4 jet $Z \rightarrow \mu \mu$ final state

	Process	$\sigma[\mathrm{fb}]$	Efficiency [\%]	$\sigma_{\text {pres }}[\mathrm{fb}]$
$70 \mathrm{GeV}<\mathrm{m}_{\mathrm{z}}<110 \mathrm{GeV}$	signal	0.454	86.8	0.394
	HZ back.	4.13	78.4	3.24
	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q q q q}$	5847	1.510^{-4}	1
	$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow$ qqll	1704	1.96	33.46
	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qqlv}$	5914	0.14	0.81
	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qqvv}$	325	$<10^{-5}$	1
	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Hvv}$	52	0.1	1
	$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{t} \overline{\mathbf{t}}$	450	0.44	1.98
	$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow$ WWZ	10	2.9	0.29

Preselection set targeted to completely remove high cross-section backgrounds

MVA analysis

- After the preselection the most difficult backgrounds other Higgs decays, qqII
$m_{H}, m_{Z}, m_{W}, m_{W^{*}}$
thrust, sphericty, aplanarity, oblatness
NPFO, Evis, PtOfHiggsJets
$-\log _{10}\left(y_{12}\right)\left(y_{23}, y_{34}, y_{45}, y_{56}, y_{67}\right)$
$\theta_{\text {partw }}, \theta_{\text {el }}$
btag, ctag variables

RESULTS

Total signal efficiency	0.55%
Number of events final	125
$\frac{\Delta \sigma}{\sigma}=\frac{\sqrt{S+B}}{S}$	13.1%

Uncertainty is dominated by small signal cross-section

6 jet final state

- Lepton isolation $\mathrm{N}_{\text {lept }}=0$

After the lepton isolation we force event into six jets which are grouped into pairs to form $\mathrm{H}, \mathrm{W}, \mathrm{Z}$.

The combination which minimizes the chi2 is chosen:

$$
\chi^{2}=\frac{\left(M_{i j}-M_{w}\right)^{2}}{\sigma_{w}^{2}}+\frac{\left(M_{k l}-M_{z}\right)^{2}}{\sigma_{z}^{2}}+\frac{\left(M_{i \mathrm{imn}}-M_{H}\right)^{2}}{\sigma_{H}^{2}}
$$

6 jet final state

	Process	$\sigma[\mathrm{fb}]$	Efficiency [\%]	$\sigma_{\text {pres }}[\mathrm{fb}]$
$40 \mathrm{GeV}<\mathrm{m}_{\mathrm{z}}$	signal	9.16	70.9	6.5
Evis>250.	HZ back.	84.23	16.5	13.9
NPFO>50	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q q q q}$	5847	18	1056.9
$\mathrm{y} 12<2.0 \quad \mathrm{y} 23<2.6$	$\mathrm{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q q l l}$	1704	0.046	1
$\mathrm{y} 34<3.0 \quad \mathrm{y} 45<3.5$	$\mathrm{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q q l v}$	5914	0.01	1
y $56<4.0$	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q q v v}$	325	0.001	1
pfo_thrust<0.9	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H} v \nu$	52	0.0001	1
btag2 <0.9	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{t} \overline{\mathrm{t}}$	450	18.9	85.5
	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{W W Z}$	10	19.7	2.0

Minimal set to completely remove high cross-section backgrounds (qq\|l qq|v)

MVA analysis

－After the preselection the most difficult backgrounds ttbar，other Higgs decays，q99q

Optimizing set of the input variables from $32 \rightarrow 26$ final ones
$\mathrm{m}_{\mathrm{H}}, \mathrm{m}_{\mathrm{Z}}, \mathrm{m}_{\mathrm{W}}, \mathrm{m}_{\mathrm{W}^{*}}$
thrust，sphericty，aplanarity
NPFO，Evis，PtOfHiggsJets
$-\log _{10}\left(y_{12}\right)\left(y_{23}, y_{34}, y_{45}, y_{56}, y_{67}\right)$
$\theta_{\text {partW }}, \theta_{\text {partz }}$
btag $_{i}, i=1,2,3,6$ ctag $_{i} i=1,3,6$（tagging of 6 jets）

HEP \＆又Oシャ VIHC＊

Uncertainty is dominated by high cross-section backgrounds (qqqq, tt)

Summary

Steps added：

MC truth matching done：refined lepton isolation
ttbar and WWZ background added
multijet hypothesis（6）b／c tagging
\square Semileptonic channels：
Electron channel ： 17.7 \％
Muon channel：13．1 \％
\square Hadronic decay channel：
Hadronic channel ： 5.9 \％（30 \％signal efficiency）

END

Variables ANGLES

6 jets FS

Variables ANGLES

1. ThetaPartW1
 FORCE EVENTS INTO 6 jets the angle between two jets that consitute W real

2. ThetaHZ_2jets FORCE EVENTS INTO 2 jets the angle between H and Z

Hpalt withle: Thenwive 4ety

