

Data Acquisition and Instrument Control @ ILL

Paolo Mutti - ILL ESI - 18 June 2015

Outline

- Physics @ ILL
- Detectors
- DAC electronics
- NOMAD Instrument control software
- Coming soon

58 MW reactor \longrightarrow 2·10¹⁵ n/cm²/s

Main Research Fields

68%

850 experiments/year

2000 users

38 countries

40 instruments

- Condense matter physics
- Material science
- Chemistry
- Biology
- Nuclear and Particle physics

Which Particles

- Neutrons (fast, epithermal, cold, UCN)
- Gammas
- Charged particles $(\beta, \alpha, ions)$
- Photons

Which Detectors

- ³He, ¹⁰B, scintillators
- lacktriangle HPGe, LaBr₃(Ce), BGO, NaI, etc ...
- Ionization chamber, Si, TPC
- CCD and CMOS cameras

Acquisition Modes

- Simple Count
- Time-of-Flight
- Kinetic
- ToF Kinetic
- ToF Extern
- Doppler-
- Energy
- DPP

Simple image of the detector with or without a pixel Events are annual endast a function of the travel time from the source tothe detection prehandely netwo ed-timentona en initial IOP+in changels from 199 ms to 100 s Events are arranged in ToF and a Eventerace slices geograted shipeshaexterthaq signal Full digital acquisition, energy and time are recorded in listmode

DAC - Requirements

- Handle high event rate (up to 10 MHz)
- Minimize dead-time and pileup
- Accurate timing (10 ps)
- High data throughput (up to 80 MB/s)
- Synchronization with complex instrument operations

A Variety of Signals

◆ Digital

Address: 0x7f66

Pulse-Shape:

Current/Voltage:

The Relevant Quantities

Analogue Approach

Analogue Complexity

Digital Approach

A/D Comparison

ADVANTAGES

- One single board can do energy, timing and pulse shape analysis.
- Low cost per channel and reliability.
- Low dead-time in the acquisition.
- Synchronization and correlation among several channels (coincidence).
- **X** All in FPGA, flexibility in tuning and calibration.

DISADVANTAGES

- Setting up the system requires time and a knowledge of the relevant parameters.
- Loss of resolution with fast signals. We are limited by the bit resolution and sampling rate.

A Digital Example

- 18 month preparation (administration...)
- 20 (hard) days installation
- 100 days (and nights) of beam-time
- More than 200 people
- New digital DAC electronics
- New data storage (60 TB)
- 3 different detector's configuration

More details on next video!

A Unique DAC Solution

Data acquisition performed fully in hardware

Optical link to storage

Event rate: ~ 10 MHz 15 bit resolution Up to 2 GS/s

Data Concentrator (event-mode, histogram, coincidence)

General clock for data taking (100 ns)

Fully Digital CFD

Time resolution: 14 ps

Virtex 6 + 1 GB ram

12 bit - 1 Gs/s

Perfect for LaBr₃(Ce)

Digital System Performances

FWHM = 2.0 keV @ 1408 keV

Digital System Performances

²²Na & ⁶⁰Co source – timing resolution

Electronic time resolution: 14 ps

511-511 keV prompt

1173-1332 keV prompt

NOMAD

Instrument Control Software

- ☑ Team project to optimize resources
- ☑ Unique interface to facilitate user's operations
- ✓ Abstraction to hide technical complexity
- ▼ Tools to help setting up and evaluating results
- ✓ Unique for all ILL instruments

Java + SWT

Dynamic interface engine

Real time visualization (OpenGL)

OMNIORB

Drivers and controllers Scheduler: sequential and parallel execution File system: data, logs, rules, etc...

C++

A Graphical Control

Scientific Controllers

Allow user to work directly with the relevant physical quantities (e.g. λ , Q_{range} , hkl, Energy)

Scientific Controllers

Instrument performance optimizer for fine adjustments or advanced regulations

/	Nomad	×
<u>E</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> ardware Se <u>t</u> tings E <u>d</u> itor <u>C</u> ommand	d <u>S</u> py	
Hardware Settings Instruments ■ Acquisition ■ Adds ■ Instrument settings ■ Adds ■ Instrument settings	Temperature control Temperature setpoint 700.00 °C Ramp mode SetPoint \$\displayset\$ 5000 °C/min	Summary Regulation temperature 0.00 °C Sample temperature 0.000 °C Setpoint temperature 0.000 °C Power 0.000 W
Furnace Description:		Vacuum 0.00 mBar U Heat 0.00 V
Parameter survey	Stabilisation	l Heat 0.00 A
⚠ Conditions	Temperature parameters Maximum temperature 1000.0 °C Minimum temperature 0.00 °C Tolerance (+/-) 3.00 °C on Regulation sensor ♥ PID parameters ✓ Operates automatically Power switch selected P1 ♥	
	P1 PIDs Temperature max Power max Proportional Integral Derivate	
	100 0 19 0 23 203 0.3 200 0 33 0 13 0.46 0.11 300 0 50 0 10 0.23 0.05 400 0 68 0 10 0.23 0.05 450 0 78 0 10 0.23 0.05	\
	WORLD THE THE U.S.T. U.S.T.	

Take Decisions - IF

Flow Control - IF BREAK

Different Interfaces

NOMADIMobile

Tablet support allows a dedicated very powerful remote control for instrument operations

http://nomad.ill.fr/

On The WEB

http://logs.ill.fr/

Coming Soon

Counting single neutron with cameras

Coming Soon

Live data reduction within the sequencer

Request Methods (with parameters)

Data files (one or many)

Check if finished (status)

Scientific Methods