

Fusion Electricity: A roadmap to the realisation of fusion energy

Tony Donné

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Fusion: the engine of the sun

Source: NASA

Nuclear Fusion

A.J.H. Donné | ESI - Garching | 15 June 2015

$E = mc^2$

Europe, USA, Japan, China, Russia, S-Korea and India

want fusion:

- No CO₂ release, clean, safe
- Fuel abundantly available
- No proliferation issues

But... Fusion is impossible

Source: NASA

Europe, USA, Japan, China, Russia, S-Korea and India

want fusion:

- No CO₂ release, clean, safe
- Fuel abundantly available
- No proliferation issues

But... Fusion is difficult

Source: NASA

Challenges in Nuclear Fusion Research

$10 \times$ hotter than the sun

Harnessing solar flares

Thermal insulation: nearly perfect

Materials one can lay on the sun

Bombardment of neutrons

Fuel cycle Tritium production

ITER: 34 countries 15.000.000 components

$10 \times$ hotter than the sun

Making a plasma

Making a plasma

Ē

Harnessing solar flares

Confining a plasma

Confining a plasma

Best confinement in a torus

Plasma heating

JET and Medium-Size Tokamaks (missions 1 & 2)

6. 60 . 0 ÷ . . . 25 ک • • . . 1 . • • y . (3.5) ļ ۲ . •) • • 30 . • . • . 60 . 50 . . 80 • 50 . 5 60 . 18 2 . 0 -2 A.J.H. Donné | ESI - Corching |

•

.

60

.

e

MAST (Culham, UK)

тороидальная камера с магнитными катушками" (toroidal'naya kamera s magnitnymi katushkami) A.J.H. Donné | ESI - Garching | 15 June 2015

Concept improvement continues

Progress in fusion

ITER

Nett power gain: $P_{fusion} = 10 \times P_{in}$ Demonstration of technical principles

JET (and other machines) Break-even:

P_{fusion} = P_{in} Emphasis on understanding the science

Thermal insulation: nearly perfect

A.J.H. Donné | ESI - Garching | 15 June 2015

Gyro code; Jeff Candy

http://fusion.gat.com/comp/parallel/figures/supertorus-hi-2.jpg

Hot plasmas have a rich structure

Gyrokinetic Simulations of Plasma Microinstabilities

simulation by

Zhihong Lin et al.

Science 281, 1835 (1998)

Fluctuations lead to reduced performance

Turbulence control (Bart Hennen / Hans Oosterbeek)

Excitation and suppression of an island in TEXTOR

High T, magnetic confinement, turbulence control

High T, magnetic confinement, turbulence control

Materials one can lay on the sun

Thermal power loads

How to reduce the power loads of 1 GW/m^2

Proper choice of the divertor geometry

Radiate >90% of the power away (uniform distribution)

Decouple (detach) the plasma from the divertor (T<10 eV)

Heat Exhaust Research in Tokamaks

Research in alternative divertor solutions (Super-X, snowflake, liquid metal divertors)

Research in order to understand detached divertor conditions

Studying Plasma Facing Components (mission 2)

Magnum-PSI

Pilot-PSI

PSI-2

JUDITH-1/2

WEST

Alcator C-Mod (MIT)

Deposition of carbon in TEXTOR

Erosion/redeposition

Reflectivity for eroded mirrors V. Voitsenya, Rev. Sci. Instrum. 76 (2005) 083502.

Material eroded away elsewhere can be redeposited on mirrors

M. Rubel, 18th ITPA Diagnostics meeting

Courtesy: A. Litnovsky

Divertor

High-power linear divertor simulators

Pilot-PSI

Magnum-PSI

First super-conducting linear plasma simulator: steady state 3T

Magnum-PSI

Fundamental Energy Research

Detached plasma in Pilot-PSI

Bombardment of neutrons

High particle fluxes

Neutron resistant materials (mission 3)

IFMIF - International Fusion Materials Irradiation Facility

Fuel cycle Tritium production

ITER: 34 countries 15.000.000 components

ITER Tokamak building

ITER 2011: building has started

ITER Headquarters opened in Oct. 2012

Building for winding poloidal field coils

483 Seismic insulation pads

483 Seismic insulation pads

Preparation for laying the ground floor

ITER vacuum vessel: more heavy than the Eiffel tower

Superconducting cables

Chepetsk Mechanical Plant

ſ	-
L	-
	laster

Kiswire Advanced Technology

Luvata

Hitachi

Oxford Superconducting Technology

Western Superconducting Techonology

A.J.H. Donné | ESI - Garching | 15 June 2015

Radial plates for the toroidal field coils

Winding the toroidal field coils

Cooling system

Cryogenic system

IC H&CD Antenna SYSTEM

Neutral Beam Heating

Transportation of heavy loads

a russia usa

Transportation of heavy loads

china eu india japan korea russia usa

A.J.H. Donné | ESI - Garching | 15 June 2015

ITER is a world wide project

Construction costs: ~15 billion Euro

First experiments: in the 2020's

Power production: 500 MW

Power consumption: 50 MW

Roadmap towards fusion electricity

1: Plasma Regimes of Operation

Main devices: JET, ASDEX, JT-60SA, ITER High fusion performance by reducing energy losses by turbulence and by controlling plasma instabilities.

To achieve acceptable power depositions in the divertor, radiate as much as possible power from the plasma without having adverse effects on the performance

Develop active methods the state of divertor detachment

Try to achieve steady state conditions

Research in alternative divertor solutions (Super-X, snowflake, liquid metal divertors)

Research in order to understand detached divertor conditions

Research to find more robust materials

Main devices: MAST, TCV, Linear devices Potentially a Divertor Test Tokamak

3: Neutron Resistant Materials

Full characterization of the baseline materials for DEMO: EUROFER as structural material Tungsten as Plasma Facing Component Copper-alloys for cooling

Expand the operational range of these materials (e.g. EUROFER has an operational range of 350 – 550 °C

Main devices: IFMIF, Early Neutron Source, Irradiation facilities

Tony Donné | Fusion DC | Ghent | 3rd November 2014

4: Tritium self-sufficiency

Main question is whether a fusion reactor can produce enough tritium for its own fuel supply

Research concentrated on Two test blanket modules in ITER

Research in extraction of tritium from the blankets

Main devices (on ITER):

- TBM based on eutectic Pb-16Li and TBM on ceramic material; both using He as coolant
- Possibly also research in water-cooled Pb-16Li

A relatively small mission to study the specific nuclear licensing procedures for DEMO and to study how the amount of radioactive waste can be reduced as much as possible.

Differences between ITER and DEMO in this respect are the much higher neutron and tritium fluences

Main device: ITER

Find ways to reduce degradation of superconducting cables under continuously changing loads

Study application of high T_c superconductors

Increase gyrotron frequencies for ECRH and ECCD to ~230 GHz

Optimize remote handling and remote maintenance strategies

Develop control strategies for underdiagnosed plasmas

6.1 Evolution of the DEMO CAD geometry

Tony Donné | Fusion DC | Ghent | 3rd November 2014

Which impact do design choices for DEMO have on the ultimate price of electricity:

Cheap and straightforward design solutions

Components with long life-expectancy

High machine availability

High temperature superconductors?

8: Stellarator

Stellarators are behind tokamaks performance wise

Stellarators are technically complicated

But, stellarators are by definition stable and steady state and they offer a number of important advantages for a fusion reactor

Main device: Wendelstein 7-X

8.1 Stellarator

Wendelstein 7-X

First operation in 2015

Tony Donné | Fusion DC | Ghent | 3rd November 2014

Safety

When do we have fusion and how expensive?

Other forms of fusion

Economy – what determines the cost

Does fusion come in time?

Growth of various energy sources

(G.J. Kramer, Nature 2009)

Fusion compared to other sources

(courtesy: N.J. Lopes Cardozo)

Safety

Fusion is no chain reaction

Fuel for only a few seconds

Safety

Deuterium and helium are not radioactive

No transport of radioactive fuels during reactor operation

No long-living nuclear waste

No emittance of green house gases

Economy: costs components

Fuel makes up only **0.5%** of the total costs!

Economy: Costs of the components

(Powen-Plante Com coptural Study)2015

Availability should grow in going from ITER via DEMO to the Fusion Power Plant

Other forms of fusion

Inertial confinement fusion

Acoustic Magnetic Target Fusion

(Courtesy: General Fusion)

Muon-catalysed fusion

Confusion

