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Instrumentation for Planetary Exploration
With thanks to C Erd and D Koschnoy
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ESA Planetary Missions

Cassini/Huygens [1997
SMART-1 [2003 — 2006] Huygeﬁ |an<5e y Og

Giotto [1985 - 1992] Flyby at Solar electric Titan (14 Jan 2005)
comets Halley (13 March 1986) propulsion to moon & -
& Grigg-Skijellerup (1990) lunar observations

09 Rosetta [2004] Venus Express [2005] . A
Steins (2008) and ol v
Lutetia (2010) BepiColombo [2014]
s Churyumov- Gerasimenko (2014)
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Mars Express [2003]




Motivations for Planetary Exploration
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History and construction of the solar ® Earth (@)
system — constraints on the accretion e § Mercury -
model > [ Venus@
Origin and evolution of moons 5 °F

Evolution of solar system (impact
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history)

Water distribution, sub-surface oceans " @ Hers

(Europa, Ganymede) E

Atmosphere runaway greenhouse effect

(Venus) - @ Moon

Organic chemistry (Titan, Enceladus) 5000 3000 4000 5000 8000

. . . . redlus [kKm

Magnetospheric fields and interactions []

with solar magnetic field

Etc many others
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Issues and Challenges for Space Instrumentation

J Mass — Power — Volume — Thermal
o All equivalent, mass is common invariant

J Miniaturization

] Radiation

 Flexibility for coping with unexpected
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Types of Remote Sensing Instrumentation

] Passive

o X-ray Spectrometer A
e UV spectrometer

e VIsS/NIR camera

* Imaging (high, medium
resolution)

» Stereo imaging

» Hyperspectral imaging

e NIR spectrometer
(hyperspectral imager)

e Thermal infrared spectrometer/

N
Imaging at all wavelengths

e Far IR radiometer
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e Accelerometer

e Atomic particle
spectrometers

e Dust telescope/sampling

d Active

e Radar reflectometer
e Altimeter (radar/Laser)

e Radio-science
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Rosetta Science Instruments

ROSINA DFMS
COSIMA [ GIADA
MIDAS ROSINA COPS
MIRO i o CONSERT
RPC IES .

ROSINA RTOF

RPC ICA JXS
RPC MIP

RPC LAP

VIRTIS

OSIRIS NAC
Philae
OSIRIS WAC
ALICE
RICMAG ‘o) Preparation
RPC LAP
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Sampling Dust

 COSIMA instrument is a time-of-flight (TOF) secondary ion mass
spectrometer (SIMS) equipped with a dust collector, a primary ion
gun, and an optical microscope (COSISCOPE) for target
characterization.

d Once one of the targets on the target wheel has been exposed to
cometary dust it is moved in front of the microscope and imaged
under shallow angle illumination provided by light emitting diodes.

 On-board image evaluation detects the presence and location of dust
particles with diameters exceeding a few um and calculates their
position relative to the target reference point. Once the presence of
features of interest is established, the target is moved in front of the
mass spectrometer.
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The “Comet Sniffer”

J ROSINA, the Rosetta Orbiter Spectrometer for lon
and Neutral Analysis, determines the composition of comet's
atmosphere and ionosphere, measure the temperature and bulk
velocity of the gas and ions

U

3 sensor approach adopted where each is optimised for a part of the
scientific objectives, while at the same time complementing the other
sSensors.

the Double Focusing Mass Spectrometer (DFMS),
the Reflectron Time of Flight Spectrometer (RTOF), and the
Comet Pressure Sensor (COPS).
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Physical Structure Investigations

1 Measure the mean dielectric properties and, through modelling, to set
constraints on the cometary composition (like material and porosity)

 To detect large-scale embedded structures (several tens of metres),
and stratifications

J To detect small scale irregularities within the comet

(d The CONSERT experiment on the orbiter and on the lander both
consist of a transmit/receive antenna and a transmitter and receiver
contained in a common box.
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CONSERT m

d

d

d

A 90 MHz radio signal, phase modulated with pseudo-randomly
encoded data is transmitted from the orbiter towards the comet

The signal propagates through the comet nucleus and is received on
the lander. The transmission cycle is repeated every 200 m seconds.

The received signal is digitised and accumulated in the lander in
order to increase the S:N ratio. The signal compressed to obtain a
time/space resolution corresponding to 100 nanoseconds/20m

Lander signal processing determines the position of the strongest
path, then transmits the same pseudo-random code with a delay
corresponding to that of the strongest path. The signal propagates
back to the orbiter along virtually the same path, (orbiter not travelled
far during the measurement cycle). The signal accumulated and
stored in the memory in order to be sent to Earth. (cycle ~1 second.)

Change in propagation delay, phase and amplitude is signature of
dielectric changes and tomography
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Plasma Measurements — multi sensors “

and objectives

 an lon Composition Analyser (ICA)
to measure the three-dimensional velocity distribution and mass
distribution of positive ions

 an lon and Electron Sensor (IES)
simultaneously measure flux of electrons and ions in the plasma

 a Langmuir Probe (LAP)
measure the density, temperature and flow velocity of the plasma

O a Fluxgate Magnetometer (MAG)
to measure the magnetic field in the region where the solar wind plasma
Interacts with the comet

 a Mutual Impedance Probe (MIP)
to derive the electron gas density, temperature, and drift velocity in the
Inner coma of the comet

"'.','.i.I.I.I.I-!-l-!-l-!'!""‘--___

eS a Advanced Studies and Technology Preparation

- = EIENN S = C. Erd
Page 13




UV spectroscopy (70-200nm)

 Light enters the Alice telescope through a 40 x 40 mm entrance
aperture and is collected and focused by an off-axis paraboloidal
primary mirror onto the approximately 0.1° x 6° spectrograph
entrance slit.

 After passing through the entrance slit, the light falls onto the toroidal
holographic grating of a Rowland Circle style imaging spectrograph,
where it is dispersed onto a microchannel plate detector. The 2-
D (1024 x 32 pixel) format MCP detector uses dual, side-by-side,
solar-blind photocathodes of potassium bromide (KBr) and cesium
lodide (Csl). The spectral resolving power (AN/AA) of Alice is in the
range of 105 - 330 for an extended source that fills the instantaneous
field-of-view defined by the size of the entrance slit.
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In-situ cf. measurements In talil

 Role of electrons near surface instead of sunlight in tail

Rosetta's close study of Comet 67P/Churyumov—Gerasimenko at
ultraviolet wavelengths has revealed that electrons and not photons
are responsible for the rapid breakup of water and carbon dioxide
molecules erupting from the surface.

09:45:02 GMT
29 November 2014
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H,0 Ho* H,0 Example of a spectral image (below) obtained by Alice for positions in the comet's coma
2

indicated in the NavCam image (above). The emission by oxygen (OI) and carbon (CT) in the
e ° coma are indicated. The bright bands labelled Lya and Ly are due to electron impact on H,0.
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Example: Science of BepiColombo Mercury Mission

Complete description of Mercury and its environment

Interior <« Surface < Exosphere < Magnetosphere

State of Core Composition Composition Size

Crust Thickness -elemental Vertical structure Structure & Dynamics
-Mass -mineralogical Dynamics Temporal variability
-Figure & topography Geological History Release processes Interaction with
-Moments of inertia  -geomorphology Source/sink balance - Solar wind
-Magnetic field -physical properties - IMF

-Surface heat flow - Exosphere
Composition of Core - Surface

55:;‘Q = esa Advanced Studies and Technology Preparation
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Instrumentation
High Resolution Colour Camera Morphology
Topograph
Stereo Camera } Surface < Co?ngosir’)cio);l
Limb Pointing Camera Temperature

Vis-Near-IR Mapping Spectrom.
TIR Map. Spectrom/Radiometer
X-ray Spectrom/Solar Monitor
Y-Ray Neutron Spectrometer

State of Core
Interior < CIEEEME
Composition

Magnetic Field

Composition
Ex her Dynamics
SSpllsfe Surface Release

Source/Sink Balance

Ultraviolet Spectrometer
Neutral & lon Particle Analyser

Laser Altimeter
Radio Science Experiment
Magnetometer

Structure, dynamics

Magnetosphere <Composition

Interactions
Advanced Studies and Technology Preparation
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Nadir Looking Instruments on Chandrayaan-1
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Visible Camera
 Mapping

 Surface investigations on morphology,
topography, composition

 Spatial resolution as high as possible

J Limited number of filters

 Stereo imaging

HRSC-SRC/Mars Express

= AMIE/SMART-1 Advanced Studies and Technology Preparation
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Vis Camera Filters

—Hematite

~— Actinolite
Diopside
Enstatite

——Fayalite

~—— Sulphur

~—— Albite

—— Anorthite

—— Pyrite
Rutile

—— GrossularGarnet

~—— AlmandineGarnet

700 800 900 1000 1100

wavelength (nm)
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BepiColombo: SIMBIOSYS

Mass: 9.1 kg mcludlng DPU
Power (all on) 33 W
Dimensions: 400 x 400 x 200 mm3

Data Volume (4 Hermean years)1200Gb

VIHI Telemetry 4.2 / 8.2 Mps (ave/peak)
m HISI Temperature -50 °C for VIHI, —20 °C /+30 °C
|||I||| "."-!.,,_
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BepiColombo: BEPICAM

Mars Science and Exploration

 Dual camera system for
global and high resolution
Imaging
e High resolution up to 10
m/px, 5m/px
e 20° tilt angle provide
stereo viewing

e Mass: 4.77 kg, incl. DPU
and margin

e Power 3/7 W depending
on observation mode

e One DC/DC for each

optical head
e Dimensions : 600 x 400 x
) R 100 mm3
In-flight direction
o ".I.l.!-l-!-!:!j!'!'!'!'!'!':“-":__
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NIR Measurements

 Surface investigations on
geology, composition

 Spatial resolution as high as
possible

 Surface spectroscopy (AA=10 nm)
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NIR Spectroscopy Requirements

LR I 1 1 T —i 1T 1T 1 [ T T 71
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Hyperspectral Imaging — “Push Broom”

Diffraction
grating )
i
i
Collimator

Slit

o = Hyperspectral Imaging Concept
ptics
Muman  TYPeEwCIw [Each zteei cortans a contnucus
> Senser _—— | mzostum that is used to otty e
- Em " ]
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\ —w"'u.
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s Ground
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C. Era
Page 26



Hyperspectral Imaging

g ¢30:-:5-m|cron _ M3 Derived M3 Derived -
' ¥ Temperature . ,Tem,r}e,ratu:r_

5
“H A f
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NIR Instruments

Aperture
Secondary e
Mirror A
Primary
‘ Mirror
Optical Box

Fibre Coupler

SIR (MPAe) “7== IR-Sensor

Spectrometer
body
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Thermal IR Spectrometer

 Geology, structure of
surface materials

O Thermal IR range 7 — 15 pm

 Spectral resolution AA =
100 — 200 nm (variable)

J Uncooled microbolometer
and grating

l il "u'-!'a

Scaled Emissivity
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1.4 7]
3 anorthite + 1 augite (0 - 74 m)
1.2 _
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Thermal IR Radiometer

4.000E-05 / / / e
0.000E+00 y | 1 —

0.00 10.00 20.00 30.00 40.00 50.00 60.00

O Thermal conductance and capacitance measurements
O Characterization of bulk body or atmosphere
O Typically 15 - 40 (60) um, AA=5—-20 um
 Broad spectral range
O Low resolution
2.000E-04

‘_g 1.600E-04 — H ,:.

& 1 200E.04 / \ 1

‘§ 8.000E-05 /

Wavelength (microns)

100K 200K 300K 400K 500K 600K 700K
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BepiColombo: MERTIS TIR & TIS

Mercury Thermal Infrared
TMA Tele-
1 H scope
Spectrometer Suite 7 e
Offner-
Spectrometer
//
> Thermopile
w4 ; Detector
2/ (Ref. JPL)
TOOK targe % :
00K target — .y Matrix Bolometer
: IRAelescope (Ref. Raytheon)
P . module
Reflective AN &
spherical
aperiure cover on
rear of scan
o
S \ 213mm
. W
Ap lmcI ; Y .I e
thermal bale 3 I et
L

Technology Preparation
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X-Ray Spectrometer

 Elemental composition of
surface material

1 Good complement to NIR
(cristallography/geology

observations) .

&

The Sun shines on the Moon (in X-rays)

2. The Moon fluoresces (in X-rays)

Each X-ray energy indicates
unambiguously the presence of a
particular element

C1XS detects these X-rays

Solar Monitor for Solar Input
required for absolute abundances

 Main application for
atmosphere-less bodies

Sun Shines in X-rays

2esa

=TS L=
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X-ray spectrum

Counts

- g T ‘
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for D-CIXS onboard Smart-1

(flare conditions)

T TTITITT] T TTTIHT] T T TTTTTT

T 1 TTTTH]

T T T T T

Basalt — Lunar ''seas"
Anorthocite — Lunar "highlands"

1 1 L 1 L 1

e
&

1.0 2.0 4.0 6.0
Energy (keV}

rage 33



eSa

SCIENCE

CIXS (SMART-1, Chandrayaan-1, BepiColombo)
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Planetary Gamma Rays

Galactic Cosmic

Rays Face Epithermal
. and Thermal
eutrons Gamma Neutrons

rays

‘I L,rlllu‘ngy r.lf:;palatlon
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BepiColombo Baseline Gamma-ray Detector

Central detector: Lutetium aluminium perkovskite (LUAP)

Efficiency Total 99% @ 662 keV

Photopeak 96% @ 662 keV
Total 91% @ 6.13 MeV
Photopeak 65% @ 6.13 MeV
Energy resolution 7% @ 662 keV
Anticoincidence shield: BC454

Efficiency 100% charged particles
Energy resolution 6% @ 662 keV

41 Photodiodes (Hamamatsu)
1 Central detector (cooled) S3590-08
6 Anti-coincident shield detectors ~ $3590-08

Bias voltages 30 V to 70 V

il l.l.l.l.l.l.!!.! e
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3 cm BC454
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LaBr3:Ce resolution

Pulse-height spectra (662 keV gamma rays) from 13’Cs source

. 43. 103 ph/MeV Nal: Tl - 61. 103 ph/MeV LaBr3:Ce
" TUDelft LI  TUDelft .
0 100 200 300 400 500 600 700 800 O 100 200 300 400 500 600 700 800
Energy (keV) Energy (keV)
1= 230 ns 1, = 18 ns
p=3.7 g/cm3 p = 5.3 g/cm3
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Neutrons

Cosmic rays Fast Epithermal Thermal Search for Water
Neutrons Neutrons Neutrons

0.1 I I I I I I
Mass fractions
of H,O
0%
0.01%
0.1%
L 1%
* 3%
= 10%
Moderation . 30%,
I 100%
—
S
-

[ -Direct interactions and
spallation collisions

-Evaporation from an
excited residual nuclei

Wentron Energy (eV)
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Epithermal Neutrons : Search for water

North Pole (>70°)

outh Pole (<-70°)

y -?{-:_:::'—
=
1 .::: =

3

b IF

EQ Nort EQ South EQ
§20 [ T T T T T T T T T T T T T T T T

500}

460}

Eplthermal Neutrons (Counts)
&
[ ]
I

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
1

T

0 30 60 90 120 150 180 210 240 270 300 330 360
Latitude along 2°-Wide Polar Bands {deg)

[H] ~ 1700 + 900 ppm
i.e. [H,0] =1.5+0.8%
—> Solar wind cannot account for such amount
(Feldman et al, 2000, 2001)
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BepiColombo MGNS

Figure 4.1. Mechanical design and interfaces of MGRS segment of MGNS
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Gamma rays and neutrons detector

New Scintillation technique based
detector

v: LUAIO;:Ce

n: Stilbene for neutrons

Spectral Resolution 4% at 662 keV
Spatial resolution 400 km at pericenter

3He proprtional counter with/without Cd
shielding One has polyethylene
moderator

High energy neutrons with sthylbene
scintillator

Choice dictated by high resolution req.
(3 KeV at 1 MeV)
Resources:
e Mass: 4.35 kg
e Power: 3 W average
Data volume 9 Mbit/day
Ops T -10 °C to +20 °C
e No heater

Advanced Studies and Technology Preparation
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Ground Penetrating Radar

(d Measures reflection of layers with changes in dielectric
constant

 Penetration depth depends on electric conductivity of soil,
centre frequency (few 100 MHz to few GHz), and power (20 — 30
W)

 Penetrations of 10s to 100s m possible

 Typical applications
e Underground water
e Ice thickness
e Liquid surfaces when surface is not accessible (Titan)

 Mars Express: 40 m antenna, 5 km depth
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Radar Sensing

MARSIS antenna beam
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\»/\\orbit 10 ]
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Mars crust co2 ice
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water vapor lines
Adv M
18l -1 ::003170'0 ' ....s.Blob.......3.g|0.0...‘...4.056....,..4.156.......4.2|02>.......4.3|06.......4.400

Page 42



Laser Altimeter

Using spacecraft as test mass —
assuming geodetic orbit

Absolute attitude measurement to
~1m

Determination of shape of planetary
body

Two implementation options

e Light pulse measurement
« Continuous pulsing of laser
* Measurement of peak intensity in
arrival pulse
e “Photon counting mode

» Emission of shorter lower light
levels

 Photon counting and gating on
expected arrival times

U O 0O DO
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BepiColombo BELA

d LASER ALTIMETER

e Principle of operation Direct
Detection approach (high
energy: 50 mJ and low
frequency 10 Hz) with Si-APD
for return signal detection

e Mass: 13.9 kg (with margin)
e Power 43.5W

e Dimensions: 900 x 340 x 350
mms3

e Requires continuous (also
dayside) operations

e Operations for altitudes
between 400 — 1000 km

e On-ground co-align. wrt medium
res camera required to 100 urad
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Exosphere
Interplanetary Space

§

9 T

g @

g 2

a 5

Exosphere S
Low-Energy

Neutrals
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UV Measurements of Hermean Exosphere (1/3)

O Vertical/ geographical/ seasonal
Species A(nm) H(km) tapn(S) mapping of already detected
H 121.6 2300 3 species (H, He, O, Na, K, Ca)
He 58.4 575 =10
O 130.2 145 d From Mariner 10 results : I(He) =
Na 330 3 101 0.05 I(0) = 70 R (Hunten et al, 1988)
268.1 1 d Detection of Na possible at 268 nm
(where 200M photocathode may be
K 404.5 59 1 used).
5218 60 O Camarginally detectable at 239
Ca 422.7 58 0.03 nm.
239.9 110 0 Naand K also measurable at
longer wavelengths : resp. 589 nm
Calculations by F. Leblanc, 2003 and 766-770 nm
(except for He)
il
w ek eS a Advanced Studies and Technology Preparation
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UV Measurements of Hermean Exosphere (2/3)

Species A(nm) H(km) taph(S)

Si 251.5 82 0.2

Mg 285.3 96 0.003
202.6 0.8

Al 308.3 85 0.04
213-215 8

Fe 297-298 41 0.5
216.7 10

S 180.7 72 13.9

C 165.6 193 11.5
156.0 35

N 120.0 165 0.2

OH* 308.5 140 2

Iy
_||||I|" ,,I..-'«:
il

d-esa

*Inferred from Morgan and Killen (1997)

 Searching for elements

expected, but not still
observed (Si, Mg, Al, Fe, S, C,
N, O, OH), and vertical/
geographical/ seasonal

mapping

According to current
modelling, metallic elements
easy to detect and map.

S, C, N more difficult to
measure (longer integration
time required).

Coverage, sampling : as
complete as possible (as for
Na, K, Ca).

Advanced Studies and Technology Preparation
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UV Measurements of Hermean Exosphere (3/3)

 Searching for ions (He*, Na*, O,
Species | A (MM) | tyein (S) | tapn () Mg®, Al*, Ca*, C*, N*, §7, ...) and
Cat 3934 10 24 mapping/monitoring
Fe* 260.0 40 93
= L2150 2000 | Gree O lonospheric density unknown.
C* 133.4 1240 2900 : :
d Working assumption:
Al* 167.0 2800 6500 X+/X=1/100
Mg* 279.5 0.6 1.3
280.2 10 » O lons of Ca, Fe and Mg
' ' ' realistically detectable on
S 1259 1.1E06 | 2.8E06 Mercury (but Ca* ouside 200M
Calculations by F. rang e) .
Leblanc, 2003 _
d C*and Al* only marginally
detectable.
s,
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BepicColombo: PHEBUS

O Probing exosphere by UV
spectroscopy

e 2 spectro-photometers based on
Micro Channel Plates detectors in
the 50 nm — 330 nm range plus

1 deg rotation scanning mirror

Double channel system, FUV and
EUV, each of which equipped
with its own MCP

Mass: 3.77 kg

Power 4 W (up to 12 W)
Dimensions: 380x 250 x 150 mm3
Scanning mirror for limb viewing

Advanced Studies and Technology Preparation
IS ESmEsEEn C. Erd
Page 49



Measurement Principle of Atomic Spectrometer

s ~
(3) photon rejection (1) ion rejection
& energy analysis
f EMNA
W plate Lol g o
START surface st L .
STOP MCP serernn gt
le
STARTMCP conversion  Si with epi-MgO
surface
(4) velocity (mass)
analysis & detection (2) ionization
. >

gseva

Fig. 1. Schematic diagram for detecting a LENA by the instrument.
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Chandrayaan-1: SARA/CENA

START MCP

. neutral particle

b
b

NPI

Field-Of-View

(ENA) of the instrument
ELS
IMA sensor
peiies (electrons)

Fig. 3. Azimuthal field of view of the instrument. Seven sectors (CH-1 to CH-7)
scanner cover approximately 160 deg in the azimuthal direction.
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Lander

 Ground truth

 Surface investigations and active sampling

 Sample selection

 High mass amplification (factors 20 or more)
 Miniaturization

 Sharing of resources: mass memory, power converter, access

J Power provision
e Battery: thermal insulation and heating

e Radioactive Power Generator: excess heat during interplanetary
transfer

I,
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Miniaturized Lander “Nanochod”

2 axis of flexibility

)

Equipment Bay

Common S/S

LMS

ﬁﬁ MIROCAM

= _ === 11=1111 =22 = 01 =5E == K1

©

MIMOS I —
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SCIENCE
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eSa

SCIENCE

PlanetMicroCam: Camera Heads & lllumination
Device

Girder (Iength: ~300 mm)

Camera Head 1

[llumination Device

- esa Advanced Studies and Technology Preparation
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Mounting Arm of Camera System

® Rigid boom concept with mast deployment
after landing

® [ander inclination compensation up to 20 °

® 3 Actuators (stepper motors) in total

® All MSS electronics inside housing, no E-Box

® Capacitive azimuth sensor ANC R
® Total mass: 1024 g /
® Total power:

- 200 mW (standby)
- 3350 mW (operational)

'.'.'.'.'.l.!.l.l.l.!-!-!!-! ™
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Subsurface Element: Drill

J Measure heat distribution of
mantle

J Search for sub-surface water

 Mounting of accelerometer for
tidal motions

J Radio beacon for libration
measurements

s

{cesa

ST 1 J[ Teees || Toseds || Terezs | | Toress il
v 7 e o B T, AT, AN 2 '.»"

3

L va
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Drill/Mole

T ether spool,
including sensor

to monitor
/ deployed length

—>

To electronics

0D

1

; Storage / launch
é tube

[

7

]

7

[ | Base oflander
Regolith surface

Thin film heatable
thermal sensors

Hammering

=11=1

-

To tether spool
Accelerometer /
S tiltmeter
Mole / HP®
/ electronics

g
B/

Imager/
S pectrometer
Volatiles
detection
i
Paylf)ad Densitometer
section

U —— detectors

HIE

Brake spring
section

[ Hammering
mechanism,
and Densito-

meter

\ shielding

Tip ofmole

Densitometer
source
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Summary and Conclusion

 Large variety of instrumentation to cover all aspects of
planetary science

 Higher level of integration and sharing of common functions
such as

e Data processing, compression, and storage
¢ Interface to s/c bus
e Power conversion and conditioning

J More reading

I,
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http://sci.esa.int/

