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g
What is the data we collect? »-—=

€ 150 million sensors deliver data ...40 million
times per second

ATLAS

EXPERIMENT
http://atlas.ch
Run: ) j;2&)51‘13

Event: 12611816

Up to 6 GB/s to be
permanently stored
after filtering




Data Collection and Archiving at CERN

R Dataflow to permanentstorage: 4-6 GB/sec

T =

CERN Computer Centre o

Al W el
.
i ! . L
200-400MB/sec
£ - C 1-2 GB/sec

~ 4 GB/sec

1-2 GB/sec




The Worldwide LHC Computing Grid _*%

Tier-0 (CERN): data
recording,
reconstructionand
distribution

Tier-1:
permanentstorage,
re-processing,
analysis

Tier-2:
Simulation,
end-user analysis

WLCG:

wWLCG

Tier-2 sites
(about 160)

Tier-1 sites

10 Gb/s links

nearly 170 sites,
40 countries

o
| =
F S

o

€

~350°000 cores

500 PB of storage

>2 million jobs/day

10-100 Gb links
>2 million file
transfers/day

An International collaboration to distribute and analyse LHC data

@ Integrates computer centres worldwide that provide computing and storage

YEARS JANS CERMN
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Original LHC computing model ~1999 7

wWLCG

&._l

cms | (@ LT

1999 $ﬁ5 = 25,000 SpecInt95
day) = 10-15 SpecInt95

1 corein 2015is 3-
500x more powerful

Online System A

00 MBytes/sec

Bunch crossing per 25 nsecs.

100 triggers per second _
Event is ~1 MByfte in size ~622 Mbits/sec TieF @ CERN Computer
or Air Freight Center
Tier 1

Fermilab
~4 TIPS

France Regional

Ttaly Regional
Center

Center

H oo

, @ Germany Regional .
Cenfter

Tier 2

~622 Mbits/

>

~2.4 Gbits/sec

Physicists work on analysis “channels”.

Each institute has ~10 physicists working
on one or more channels

Data for these channels should be
cached by the institute server

100 - 1000
_Mbi‘rs/ sec

6-—

AMS CERN




World-wide infrastructure
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B2 ECS History

* 1999 - MONARC project

—  First LHC computing architecture — hierarchical
distributed model, focus on network control

2000 - growing interest in grid technology

—  HEP community main driver in launching the DataGrid project

e 2001-2004 - EU DataGrid project

— middleware & testbed for an operational grid

e 2002-2005 - LHC Computing Grid —

— deploying the results of DataGrid to provide a
production facility for LHC experiments

e 2004-2006 — EU EGEE project phase

— starts from the LCG grid
— shared production infrastructure
— expanding to other communities and sciences

 2006-2008 — EU EGEE project phase

— expanding to other communities and sciences
— Scale and stability
— Interoperations/Interoperability

e 2008-2010- EU EGEE project phase 3

— More communities

CGee

— Efficient operations fo”rab"gg,e,ﬁfs
— Less central coordination
e 2010-201X EGI and EMI ‘

— Sustainable infrastructures based on National Grid Infrastructures
— Decoupling of middleware development and infrastructure
— Merging middleware stacks in Europe ﬁ

2
EUROPEAN MIDDLEWARE INITIATIVE e s I
6/22/2015 8
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Publishes

CRLs ervers use
server
certificates for

Worldwide LHC Computing Grid

A\VAVA B ] =

6/22/2015 Grids to Clouds
|5 CERN

e
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" Public Key Based Security (X509)

% O Public Key Infrastructure for Virtual

Moving to a system based on

WLCGG
oridwide LHC Computing Grid

Federated Identities
(close to what Is used by eduroam)




eduGAIN z.

Built on existing federations and infrastructures
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H eduGAIN oining [l Candidate

CERN participates in eduGAIN via SWITCHaal
Many NRENSs participate in eduGAIN too
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|
B VLSS To-Tis-T2s

H CA-TRIUMF

B DE-KIT

B ES-PIC

B FR-CCIN2P3

H |T-INFN-CNAF

B KR-KISTI-GSDC

H NDGF

B NLT1
TW-ASGC
UK-T1-RAL
US-FNAL-CMS

US-T1-BNL

6,;2,2015 Distribution of jobs in WLCG

YEARS JANS CERMN
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ol _\WLCG

Worldwide LHC Computing Grid

B USA
T2s are grouped by country or region " UK
B France
B Germany
M [taly
B Canada
M Russian Federation
H Spain
B Romania
M Poland
H Japan
H Israel
M Portugal
B Czech Republic
B Switzerland
B Taipei
H China
B Australia
B Sweden

M Slovenia

i Belgium

B Latin America
B Estonia

H India

H Turkey
6/22/2015 13
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Scale of data today

5,000

s CERN New data

4,000
3,500
3,000
2,500
2,000
1,500

Transfered Data Amount { TB )

15P

-
-
o II -III II I I I I
=1 |
2009

2011

23 PB

Tima
Experinents Production Data in CASTOR
188 PB T T T T T 1
Lol
3 18 PB | -1 188
-
L
&
e
v
S .
2 el CERN Archive 1 10
&
" >100PB
= - .
£ 1 billion files
— 188 TB | 1 1
g )
[
w
r
o
[
3 J
© 18 TB Y - 188
£ )
TOTAL Data Volune
TOTAL Data Volume on tape
TOTAL Hb Files
1 TB L L L L 18
Feh Febh Feb Har (/22 Har 5 Har Har
2003 20805 2087 2889 2811 2813 2015

Generated on Har 18, 2815

2012

H

21CP

Hunber of files

user, 9.69%
other, 2.16%
ntof, 1.43%
nat1, 1.8%
nads, 0.04%
Ihch, 7.17%
lep, 0.01%

it, 0.26%

harp, 0.01%
impass, 7.84%

cmg, 25_28%

Grids to Clouds

WLCG

afs

W alice

W ams

W atlas

W cms

| compass

W hch

W naéil
other

W user

UNEMOWN, 0%
afs, 3.42%
alice, 7.34%

ams, 6.66%

atlas, 26_88%

cast, 0.01%
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LHC - Big Data... .

Duplicate raw data
Few PB of raw data becomes ~100 PB! = O Simulated data

Many derived data
products

Business emails sent S Daaln oo (J Recreate as
3000PB/year In 2012: 2800 exabytes

(Doesn’t count; not managed as created or replicated SOﬁware gets
a coherent data set) 1 Exabyte = 1000 PB improved

~14x growth  Replicate to allow
expected 2012-2020 e physicists to
mé Facebook upload .
e access it

r . . .
@ 6/22/2015 rids to Clouds 17
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LHC OPN

LHCOPN

» Optical Private Network

 SupportTO-T1
transfers

e Some T1 —T1 traffic

« Managed by LHC Tier O
and Tier 1 sites

1G C ararnie- Surined

TW-ASGC

117.103.946.0'20
140109 38.024
140109102 .0/24
202 140 160019
202.169.168.0/22

KR-KISTI

AB123T7
134.73.120.0/24

NDGF
(1]

AS39590
1089105124 022

130.2405.170.0/22
130 248 152 240529

CA-TRIUMF

AEIEIT
206.12.1.0/24
206.12.9.0/29
206.12. 904720

US-T1-BNL

AS4d
130.193.185.0/24
130.193 48.023
130.199.34.024
152 12 15.0/24

14310032 722
14510017028
AT104

194,171 3612825

1065 Surfres- DFM

— 0. T1 ard T1-T1 rafic - sice |- s

e T1-T1 ¥ only B-cas  =LHCD
- e e Mot deployed yet
B i) > =105
#hin) <10Gbps

Fap prediax 192181850024
edoando martel | cem.ch D1

239G USLHCret ESred

192100 43.0/24
192.100 48.023

105 DFN-EWITCH-GARR

US-FNAL-CMS

AZ3iaz

131 22520024
131 225.160.0/24
131 225104 0022
131 225 188.0/22
131 225204 0722

RRC-K1-T1
(] ]

ASIB024

144 200224 024
144 200 236024

FR-CCIN2P3
i

AETH
193.48.99.0/24

1 ARAZONAT

ES-PIC

AEA3N13
193.108.172.0/24

25 DF M-Surinet U 3UHC net £ Sned
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LHCONE: A global infrastructure for the High Energy Physics (LHC and Belle ll) data management

ﬂmﬁér"“a
{7 u

i\

Ic

e

SARA NORDUnet
Metherlands MNordic
MNL-T1 HDGF-Tib NDGF-T1

NDGF-T1c

Kurchatow

MNetherLight
Amsterdam)

BNL-T1
sLac UCSD

Kl L'

i KERONETZ ™~

: Korea 3 PacWave

: : s le

-, KCMs unnyvale)

'l'l"1‘-.“ . "r.p

CERN<_)
Pacificws

{Los

Angeles)

.. UWisc
Vanderbilt
Internetz Harerd

RedIRIS
Spain

CERN

RENATER
INZP3 France

{10 sites)

(7 sites) CNAF-T1 [NFN

Napoli

(CERNLight) ®ism
Geneva Keorea

T1

RoEduNet
Remanisualic
HIHAM 155 ITIM

INFN NIPNE =3
P L e, Pisa

,-‘: = cuDpl "‘.‘__ 27 February 20135 — WEJohnston, wej@es.net -
ico yellow
':-. j. c:) LHCOME VRF domain uch | HC Tier 1/2/3 ALTAS and CMS outline

e s kEk  Belle Il Tier 1/2 dicates
e my e C:} LHCOMNE VRF aggregator network LHC ALICE LHC+Belle Il
site
Sites that are standalone VRFs,

@ Regional R&E communication nexus
or link/VLAN provider

g Communication links: 1, 10, 2003040, and 100Gb/s

See hitp:/lhcone.net for details.
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B2 VECS Data Transfers

Gwidashocs Transfer Throughput
2014-01-01 00:00 to 2014-07-29 00:00 UTC
12k 7

10GByte/s

M

10k

\b Q\ \b Q\b ‘\b \b \b \ Q \ \b \b ‘\b Q\b \ Q\b \b
S ,?5" ,55" ,55" ,g" 53 \55" & \53"' Ry "‘"’ 3
& 9“ ST T
O $ D

| B alice @M atlas  cms B0 lheb |
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WLCGG

Worldwide LHC Computing Grid

Aggregated bandwidth = 7.48GB/s
Number of active sites: 108
Number of active links: 754 (754 total)
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wWLCG

What’s next?

6/22/2015 Grids to Clouds 23
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The LHC timeline

L ~ How many events

' Pile-up ~ complexity

L~7x1033

8 TeV

2012

nominal

luminosity 75% |

Pile-up~20-35

splice consolidation
button collimators
R2E project

2013 2014

experiment beam pipes

YEARS JANS CERMN

L=16x1034
Pile-up~30-45

w

13-14 TeV

SPS

2015 2016 2017 2018 2019

nominal luminosity

= |

LS2

injector upgrade
cryogenics Point 4
dispersion
suppression
collimation

experiment upgrade
phrase 1

L=2-3x1034
Pile-up~50-80

14 TeV

_cryolimit
interaction
regions

2020 2021 2022

radiation
damage

2 x nominal luminosity

. X

—

—

o Clouds

LHC / HL-LHC Plan

LS3

HL-LHC installation

experiment upgrade phase 2

2023 2024 2025 Ill

wWLCG

L.Rossi

L=5x1034
Pile-up~ 130-200

5to7x
nominal
luminosity

}.—

3000 fb™"

~ Accumulated Data




Data: Outlook for HL-LHC  .Z.

450.0

400.0 ——

350.0 ——

300.0

& CcMmS

250.0
ATLAS

PB

200.0 —— WALCE
i LHCb

150.0 —

We are here

100.0 ———— ——
Run 3 Run 4

0.0

Run1 Run 2

* Very rough estimate of a new RAW data per year of running using a
simple extrapolation of current data volume scaled by the output rates.
@- To be added: derived data (ESD, AOD), simulation, user data...
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CPU: Online + Offline z

160

140

MHSO06

120

100

80

60

40

20

0

« GRID
W ATLAS

- CMS

sLHcb Room for improvement — — —»

i ALICE

Historical growth of 25%/year « _

‘\

~b

Run 1 Run 2 Run 3 Run 4

* Very rough estimate of new CPU requirements for online and offline
processing per year of data taking using a simple extrapolation of Run
1 performance scaled by the number of events.

<Y
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Not only physics

10,000,000,000,000,000
(10 potabytos)
1,000,000,000,000,000
100,000,000,000,000

10,000,000,000,000

1,000,000,000,000

Bytes

100,000,000,000

10,000,000,000

1,000,000,000

100,000,000

10,000,000
2004

Growth of EBI repositories, lines
are 12 month doubling

YEARS fANS CERM

*-Controled access human data
+Metabolomics data

*Raw sequencing data - Microarray data

wWLCG

+Proteomics data Doubling of data, 12 months
...'..‘.,...00"".» e
.',,,...-n‘“' = arerersd
"" 2] .“'
M“".‘ " .
[ aaad o prases et
o p e
” P ety PR LA
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........ " ') v "
F o g J
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’
Forecast storage at EMBL-EBI
2006 2008 2010 2012 2 4000
Year 3500
2000
o 2500
2000
n 1500
E 1000
LS00
(] T T T
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wWLCG

Evolution of the computing
models
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Evolution of Computing models — ‘?
enabled by networks

wWLCG

ATLAS to 2010:

Data flow via the hierarchy|| Tier0 ol .
The 'MONARC' hierarchy Tww | Original model:
Static strict hierarchy
Tier 1 -
£0% Multi-hop data flows
Lesser demands on
Tier 2 Tier 2 networking
~45% Virtue of simplicity
Designed for <~2.5 Gb/s
... 10 clouds/Tier 1s, ~70 Tier 2 sites within the hierarchy
ATLAS from 2011: Direct mesh of Tier 2 data flows,
Today: 'relaxing’ the hierarch

Bandwidths 10-100 Gb/s, not limited
to the hierarchy

Flatter, mostly a mesh

Sites contribute based on capability

Greater flexibility and efficiency

Mo,;e_f_ully utilize available resources

R

YEARS JANS CERMN
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Networking growth has been dramatigﬁe
100 PB- US ESnet as an example

Projected volume for Dec 2013: 40.6 PB

10 PB- . Actual volume for Dec 2012: 12.0 PB -

ESnet traffic growth since 1990

1pel | A factor 10 every ~4.3 years

15.5PB/moin April 2013

100 TB-

ESnet March 2013

10 TB-

1 TB-

100 GB-

Bytes/month transferred

SUNN ESnet PoP/hub locations

L L L L L L . L. D T B L A L A . L . L L L L L L
FEEEEEEEEEEEEEEEEEEEEEEEEREREEEREEFEFEEEREREERERE
w BB aBdadaBdadapd a2 ad s RO RO RO RO RO RO RO RO RO RN
88805 RgRsRgRaReataRaByBuoaREBLBERL08RERERE2E2ERE2

‘i
Month

WS Grids to Clouds
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Data federations v

wWLCG

] Wide area access to data

= Access any data from any site without the need
to first copy it

* Optimizing data access from jobs: remote access,
remote |/O

= Performance is good — more intelligence and better
caching at all levels

J More intelligent data placement/caching; pre-
placement vs dynamic caching

] Federated storage important for big data

= Distributed management and uniform access —

preserves administrative autonomy and is inherently
scalable (scale-out)

: S 6/22/2015
YEAF
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ATLAS FAX Infrastructure .....

Aggregated bandwidth = 461.05MB/s
Number of servers: 23

Number of clients: 27

Number of active links: 134

@levatelle

YEARS JANS CERN

Today uses “xrootd” protocol — (and HTTP)

—

Global view

US Region

o

]
MWLCGC



Drivers of change .

d Must reduce the (distributed) provisioning layer of compute to
something simple, we need a hybrid and be able to use:

=  Our-own resources
= Commercial resources
=  Opportunistic use of clouds, grids, HPC, volunteer resources, etc.
O Move towards simpler site management
» Reduce operational costs at grid sites
» Reduce “special” grid middleware support cost
The remote data capabilities of the data federation allows us to

separate the use of opportunistic compute from the need to
distribute data everywhere

O Today (2015) it is cheaper for us to operate our own data
centres

=  We use 100% of our resources 24x365

d We also get a large synergistic set of resources in many Tier 2s
— essentially for “free” — over and above the pledged resources

d However, commercial pricing is now getting more competitive
» Large scale hosting contracts, commercial cloud provisioning

@ 6/22/2015 Grids to Clouds 35
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Compute resources — Grid 7.

J LHC has a federated, globally distributed, computing
system
» A"Grid” by definition; autonomous resource provisioning and
operation
» Until now the middleware used to implement that has
been mostly developed and supported by HEP, and grid
projects funded by national and international funding

agencies
» No industrial take up, no global support, etc

When we started there was no large scale computing
infrastructure or tools (no Amazon, Google, Facebook,...)

» Federated use of Cloud technologies give us an
alternate implementation of compute provisioning
» Huge support community

» Industrial-strength tools tested at scales larger than ours
(hmmm ... well mostly...)
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Why Clouds? .

J Clouds offer flexibility

= user workloads and system requirements are
decoupled

= dynamic allocation of resources
= commercial and non-commercial providers
J Based on established, open technology and
protocols
= expertise is widely available
= products and tools evolve rapidly
= commercial and non-commercial users

d Proven scalability

= small in-house systems to world wide distributed
systems

& 6/22/2015 Grids to Clouds 39
YEARS

YEARS JANS CERMN



Clouds in LHC 2

d CERN and many WLCG sites are now using
cloud technologies to provision their compute
clusters

= Together with “devops” toolchains to manage the
scale we are now at

= Many are deploying Openstack — global community
J Cloud provisioning

= Better cluster management and flexibility

= Can run existing grid services on top — but don’t
really need to

J LHC experiments also manage HLT farms with
Openstack

= Allows them to switch between DAQ and processing

@ 6/22/2015 Grids to Clouds 40
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Openstack - Federation z.

Many Others on

Rackspace Public
Cloud

CERN Private
Cloud
120K cores

ATLAS Trigger
20K cores

CMS Trigger

20K cores

« Federate clouds; based on EduGain identities

* In collaboration with Rackspace in CERN-openlab

 All contributions are to OpenStack upstream so will
f/"‘ appear Iin all OpenStack clouds at all the sites

6/22/2015 Grids to Clouds 41
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A European Cloud Computing Partnership: Mux
big science teams up with big business THESCIENCECLOUD
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Cloud

VMs on demand

wWLCG



Grid vs Clouds 2

d  Grids

= abstraction for Services
Batch, Storage...
high level, huge variety of services

* management of communities
Virtual Organisations (VO)

= Provider Centric
monitoring, accounting, security model, quotas

d Clouds

abstraction for Infrastructure (laaS)
= Jow level services
CPU, object store,....
= no management of communities
= high level services VO centric
Workflow, accounting, quotas, security
= User Centric!

users have to organise workflows, accounting, conceptualisation,
monitoring, sharing.....
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Areas to be addressed 2

J Image Management

J Capacity Management

J Monitoring

J Accounting (Provider and Client)
- Pilot Job Framework

] Data Access and Networking

J Quota Management

J Supporting Services
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Image Management z.

J Provides the job environment

=  Software
CVMFS
PilotJob

= Configuration

= Contextualization
] Balance pre- and post-instantiation operations

=  Simplicity, Complexity, Data Transfer, Frequency of Updates
 Transient

= No updates of running machines
Destroy (gracefully) and create new instance
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Capacity Management z.

3 Managing the VM life cycleisn’ t the focus
= |tis about ensuring there are enough resources (capacity)
 Requires a specific component with some intelligence
» Dol needto start a VM and if so where?
» Dol need to stop a VM and if so where?
= Are the VMs that | started OK?
 Existing solutions focus on deploying applications in the cloud
= Different components, one cloud
= May manage load balancing and failover
= One configuration, many places, enough instances?
d Developing our own solutions

= Site centric
The VAC model

= VO centric

&
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Monitoring .

J Fabric management
= The responsibility of the VO
= Basic monitoring is required
 The objective is to triage the machines

= |nvoke a restart operation if it not ok
Detection of the not ok state maybe non-trivial

d Other metrics may be of interest

 Spotting dark resources
= Deployed but not usable

J Can help to identify issues In other systems
= Discovering inconsistent information through cross-checks

d A Common for all VOs
= Pilot jobs monitoring in VO specific
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Provider Accounting 1 Zsl)ia
THESCIENCECLOUD
J Helix Nebula

» Pathfinder project

Development and exploitation
Cloud Computing Infrastructure

= Divided into supply and demand

= Three flagship applications
CERN (ATLAS simulation)

EMBL .
J FW: New Invoice! EMBL i

= Canyou please confirmthat these are legit?
= Need to method to record usage to cross-checkinvoices
= Darkresources

Billed for x machines but not delivered (controllable)
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Consumer-Side Accounting .Z.

J Monitor resource usage

= Course granularity acceptable
No need to accurately measure

J What, where, when for resources

= Basic infrastructure level
VM instances and whatever else is billed for

] Report generation

= Mirror invoices
Use same metrics as charged for

1 Needs a uniform approach

= Should work for all VOs
Deliver same information to the budget holder

&
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Provisioning & monitoring chain x.

O Key role of VM monitoring
= Real-time monitoring
=  Alarming

Push high resolution -
data points into InfluxD8
E0S =  Accounting
Stats & Alarms T
\F SlipStream o Dally high resolution data u B e n C h I I I ar kl n g
+ RRD backups
WEB DASHBOARD
._ p
Health Manager ((———) @ w < g >
SlipStream API b & RRD Backup
' a a (Every hour) CEPH
[E=| suesox wee || (1 Strategy

with 15s time resolution

0 Benchmark each VM at
startup

\ | /i = Ganglia data preserved

A\

CCCCC
...........

ATLAS Pilot
Factory
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Benchmarking .

 Each created VM has been benchmarked using ATLAS
KitValidation
= ~30,000 VM benchmark performed
= 100 Single Muon events simulated (~2 min to run)

 Results
» CPU performance uniform within 15% spread

=  Benchmark profile consistent over time

=
Ln

|- Benchmark Single Muon Simulation |
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Benchmarks vs Job performancew‘zg

 Consistent job CPU performance and

benchmark

= Correlated behavior
e Qutliers detection

= KV bmk (2)is a prompt and effective solution

to identify VMs with poor performance

-g 1000: ‘ Entries 81571
o, = o Meanx  1.041
0 900 — ;b*** Meany 34138
e C : RMSx 0.1083
S 800— RMSy 33.9
n_ —
(@] C
o 700—
€] —
vl [
600[—
500 —
400 —
= fit
300 — ¥ 7 ndf I 227715
- Pgob 0.8097
= p 242.3%10.4
200 = pi 96.06 + 8.64
100 —
0 :\, | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | |
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Other Considerations z

J Dataaccess and networking
=  Have so far focus on non-data intensive workloads

J Quota Management

=  Currently mostly fixed limits

Leading the partitioning of resources between VOs
How can the sharing of resources be implemented?

J Supporting Services
=  What else is required?
= Egsquid caches in the provider
" How are these managed and by who?

. Non-Virtualized approaches

" |nstantiation of a pilot job
Without CE
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Commercial Clouds =z

(] Helix Nebula

=  Apublic-private partnership
Between research organizationsand IT industry

J  Microsoft Azure Pilot

u Preliminary discussions with CERN OpenLab
J  Amazon

=  BNL RACF for ATLAS and CMS

=  With new Scientific Computing group at AWS
(d Deutsche Borse Cloud Exchange AG

n Beta testing platform

=  Willgo live beginning of May
- PICSE

= Procurement Innovation for Cloud Services in Europe
(J  European Science Cloud Pilot

= Pre-Commercial Procurement (PCP) proposal
Buyers group publicorganizations thatare members of the WLCG collaboration
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Example Commercial Cloud Test. 7.

3300

w3000

2000

1500 |

101][)

Number of running VM

70
&éﬂﬁ

2500 |

500-

'\»:J

| — Runmng VM5|
> > 5 5 5 5 > > S 5 5 S 5 5 s
e @ a1 ™ Y 4 Y Y o ﬁﬁﬁ ﬁfﬁ ﬁﬂﬁ ﬁﬁﬁ ﬁfﬁ e
v g v @@‘ e e e e wot wet et ot et et
hour

Up to 3,000 concurrent running VMs
. 4 (+1) weeks of production
. ~1.2 million CPU hours of processing

O ATLAS GEANTZ4 Simuldfion of

. ~11.5 million events processed < ~160,000 files produced

= ~93% CPU/Wall time ratio

. ~97% job wall time used for successful runs
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~9 hours single job duration

events

Lost heartbeat is the main source of failures (~81%)

6/22/2015

NEvents Processed in MEvents (Million Events)
1295 Hours from Week 09 of 2015 to Week 16 of 2015 UTC

11.5 million n—
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Compared with other ATLAS cloud sites (March)

(A Amein a
;_:/"\]\ 1>l

NEvents Processed in MEvents (Million Events) (Sum: 23.00)
HELIX_NEBULA_ATOS - 38.78%

CERN-PROD_CLOUD - 16.51%

.?

wWLCG

 Significant contribution
compared with other ATLAS
cloud sites running simulation

= Largest# of processed events
= Longestwall tim mpti
IN2P3-CCT3 VMO1 -13.56% ongest wall time consumption
= High wall time efficiency
BOINC - 10.95%
Rttp://cern.ch/go/9b8g
B HELIX_NEBULA_ATOS - 38.78% (9.00) B CERN-PROD_CLOUD - 16.51% (4.00)
M IN2P3-CCT3_VMO1 - 13.56% (3.00) M BOINC - 10.95% (3.00)
B CERN-P1_MCORE_HI - 6.41% (1.00) M 14AS_MCORE - 4.64% (1.00)
M 1AAS - 3.32% (1.00) I UKI-NORTHGRID-MAN-HEP_VAC - 3.28% (1.00)
B UKI-SOUTHGRID-OX-HEP_VAC - 1.15% (0.00) [ZJ RAL-LCG2_VAC - 1.01% (0.00)
B UKI-NORTHGRID-LANCS-HEP_CLOUD - 0.31% (0.00) I3 CERN-P1_MCORE - 0.05% (0.00)
M GRIDPP_CLOUD - 0.02% (0.00) W HELIX_NEBULA EGI - 0.01% (0.00)
M CERN-P1_preprod - 0.00% (0.00)
0g , . . . 25 30 35 40 45 CERN-P1_preprod
BOINC i i i i
HELIX_NEBULA ATOS . RAL-LCG2_VAC
IN2P3-CC-T3_VMOL g
Wall time consumption in seconds [1.e9] CERN-P1_MCORE_Hr
CERN-P1_MCORE Hi .
IAAS_MCORE i HELIX_NEBULA_ATOS
[ [ ] completed BN successful failed | I
CERN-PROD_CLOUD g
- - I I I I I I I 00 @8 10
00 05 10 15 20 25 30 35 40 45 e
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The monthly activity o
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o Task completed (no more jobs) Resource usage: VMs stuck in provisioning o
: UEffective: 77% :
9 CERN network issues Cloud layer reports zero VM running 9
= Surplus causes
e Agent auth. cache not renewed 10% CERN,13% Ia‘?S:’ Read-only file system e
, UAfterimprovement “b”:
e Task abruptly terminated = Effective’ 93% Stuck orchestrators: 4 faulty KVMs 0
otaerTUNs: missing status from few VMs/run e

BN [mprovement: auto-scaling (up/down) based on load

B [mprovement: Orchestrator-less single-VM runs

f‘\
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VMs still alive after run deletion o
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Opportunistic resources z.

] Today this has become more important

= QOpportunistic use of:
HPC’s (backfill)
Large cloud providers
Other offers for “off-peak” or short periods
Etc.
All at very low or no cost (for hardware)

= But scale and cost are unpredictable

 Also growing in importance:

= Volunteer computing (citizen science)
BOINC-like (LHC@home, ATLAS/CMS/LHCb@home,
etc)

Now can be used for many workloads — as well as the
outreach opportunities

éJ 6/22/2015 Grids to Clouds 63
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Volunteer Computing



Volunteer Computing %

J Atype of distributed computing

- Origins in mid 1990s

J Computer owners donate computing capacity
= To a cause or project

J Not necessarily only spare cycles on desktops

ldle machines in data centers
Home clusters

d SETI@home and Folding@home
= Launched 1999

J CERN runs LHC@home
= http://lhcathome.web.cern.ch/

@ 65
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wWLCG

N

Berkeley Open Infrastructure for Network Computing

= Startedin 2002

= Funded by the National Science Foundation (NSF)

= Developed by a team based at the Space Sciences Laboratory
University of California, Berkeley
Led by David Anderson

J Provides the middleware for volunteer computing

= Client (Mac, Windows, Linux, Android)

= GUI

=  Application runtime system

=  Server software

= Project Web site

YEARS JANS CERMN
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SETIRE HOME z

d Search for Extra-Terrestrial Intelligence

J Analyses radio signals
= Arecibo Observatory in Puerto Rico

J Supporting scientific work

= Detection intelligent life outside Earth

Yielded no conclusive results
No evidence for ETI signals

J Viability and practicality of volunteer computlng
= 120K Active Users e ——
= 180K Active Hosts E\:(I—C

STATS

‘ ) (AL bharhes
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BOINC With Virtualization for LHC¥.




The WLCG DataBridge

Experiment

Framework

A
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Infrastructure

3 Message €
Queue

7
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Volunteer

Volunteer
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: http://svhweb.cern.ch/tra
I ¢/lcgdm/wiki/Dynafeds
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CERN BOINC Service Monitor .7

DASHBOARD

Cern BOINC projects statistics

Showing last T days

Sixtrack: 100k parallel Jobs

NUMEER OF RUNNING JOES

| wlHCathame @ Atlas B siddrack unningJobs max per 80m | (S04 hits)

(ERE K]

LRl

ACTIVE CLIENTS o & 9 $f = ACTIVE CLIENTE e @ 2 4 =x TOTAL NUMBER OF e 5 8 4 x TOTAL NUMBER OF Li]

CLIENTS CLIENTS
@ vLHCathome [20238) W sixirack (12477} vLHCanome @ Atas @ sixirack

@ Azs (1205) | max of recenfWith ReceniCredit recentiffithPecemCredit max per S0m | (504 hit=) ® L HCathame (12300} @ sidrack (126400} vLHCathome @ AHas W shdrack ussrsWithCredit
{4KK] W Azl [3144) | max of usarssWi G rodet mak per Slim | (504 hitz)

1
10000

TUHHHY
000



http://cern.ch/go/9nRz

SixTrack (LHC machine) z.

- Original classic BOINC project for beam simulations
= Calculates stability of proton orbits in the LHC accelerator
Simulates particle trajectories

1 Based on experience from the Compact Physics
Screensaver (CPSS)

= Ran SixTrack on desktop computers at CERN

3 Outreach project for CERN’ s 50th anniversary 2004
= Also Year of Physics (Einstein Year) 2005

d Application written in FORTRAN
= Runson Linux, Mac and Windows platforms

J Renewed effort for LHC upgrade studies (HL-LHC)
= 12K Active Users

= 19K Active Hosts “\-(—
« 35 TeraFLOPS 5‘5%%5 Q/ @home
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Test4Theory z.

 Theoretical fitting of all past experimental data
* Including from the LHC
= Using Monte Carlo simulation based on Standard Model

J Launched 2011
= |n partnership with the Citizen Cyberscience Centre (CCC)

J Pioneered use of Virtualization with BOINC
 Uses recent developments from CERN’ s PH-SFT Group

= CernVM
= CernVMFES
=  CoPilot

d Widerange of potential (physics) applications
= |n 2014 changed name to Virtual LHC@home

&
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Test4Theory Usage z.

Jjogeea
Gaaeea |
oaae88 |
4886888 |
300688 [

#_jobs/nonth

200888 |

180688 [

P ; ; ; ; ;
Jan Jul Jan Jul Jan Jul Jan Jul Jan

dTotal of 1.7 trillion events simulated since 2011
Source: MC Plots (http://mcplots-dev.cern.ch/production.php)
See also: http://cern.ch/go/9nRz

&
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http://mcplots-dev.cern.ch/production.php?view=status&plots=monthly

ATLAS@home 2

1 Started as pilot beginning of 2014
= Now open to the public
http://atlasathome.cern.ch
d Also using CernVM and virtualization
= Classic BOINC model
d ARC CE used to interface with BOINC
= PanDA for job management
d Supports simulations
= Potentially other types of ATLAS workloads
3 Job size and 64bit image limits to “hardcore” volunteers
= Already significant CPU contribution
 Integrated with LHC@home environment

= BOINC server hosted by CERN’ s IT-PES group
= ARC-CE and BOINC sharing data via NFS

&
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ATLAS@home Usage z

Slots of Running Jobs

743 Hours from 2015-03-10 to 2015-04-10 UTC
7.000 T T T T T T T

6000 Jobs

6,000

5000

4,000

3,000

2,000

1000

20150312 2015-03-15 A015-03-18 2015-03-21 2015-03-24 2015-03-27 A015-03-30 2015-04-02 2015-04-05 015-04-08
http-{fcern.chigo/BRFt

W MC Simulation I Others

Maximum: 6,277 . Minimum: 0.00, Average: 4,613, Current: 4,767
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ATLAS@home Contribution 2

Slots of Running Jobs
120,000 . . ,66‘ | | | | | |

100,000

2nd largest simulation site
Running 4-5k parallel jobs
20M events simulated

5M CPU hours

A015-02-06 A015-02-09 2015-02-1.

http://atlasathome.cern.ch/atlas job.php

W ENL-ATLAS WEOINC

B UKI-LTZ-BRUNEL B CERN-PROD

EMWT2 BINFN-NAPOLI-ATLAS

B UKI-NORTHGRID-MAN-HEP OUKI-50UTHGRID-RALPP
MBI _ATLAS TIERZ W SIGNET

B WUPPERTALPROD B UKI-NORTHGRID-LANCS-|
OIFIC-LCGZ BT SWT2

O UNI-FREIBURG W GRIF-IRFU

B CERN-P1 -FTP IE- I:"\?HE
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http://atlasathome.cern.ch/atlas_job.php

CMS@home prototype z.

CMS  Project T Volunteer

Boinc Server Boinc client

Starts
CernVM

Active MQ
Server

N\
2

Data flow

= Webserver

1
Pulls:job
files :

<Y 81
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Summary .

Grid computing worked for WLCG

Model changed from Tree to Mesh structure
 networks improved much faster than CPUs

Shift from resource provider to user community
* new tasks, new responsibilities, new tool-chains
Focus now:

« Lower operations costs - Clouds

« Common technologies

« Private/Commercial Clouds

e Opportunistic resources

« Optimization of code and workflows

@ need ~ factor 10-20 improvement!
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