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Particle Tracking in a Conventional Style

e Computations of the electromagnetic fields — FEM, BEM.,...
Field values at grid points. — Interpolate anywhere else.

e Numerical integrations of the trajectories through the fields.
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z(m) A coarse grid (d_R=5cm, d_theta=1deg) is used for the field data, only for the easy demonstration.



Transtfer Map Method and Differential Algebras

e The transfer map M is the flow of the system ODE.
Zp = M(%,9),
where 7; and Z; are the initial and the final condition, § is system para-
meters.

e For a repetitive system, only one cell transfer map has to be computed.
Thus, it is much faster than ray tracing codes (i.e. tracing each individual
particle through the system).

e The Differential Algebraic method allows a very efficient computation of
high order Taylor transfer maps.

e The Normal Form method can be used for analysis of nonlinear behavior.
Differential Algebras (DA)

e it works to arbitrary order, and can keep system parameters in maps.

e very transparent algorithms; effort independent of computation order.

The code COSY Infinity has many tools and algorithms necessary.



Field Description in Differential Algebra

There are various DA algorithms to treat the fields of beam optics efficiently.
For example, DA PDE Solver

e requires to supply only

— the midplane field for a midplane symmetric element.

— the on-axis potential for straight elements like solenoids, quadrupoles,
and higher multipoles.

e treats arbitrary fields straightforwardly.

— Magnet (or, Electrostatic) fringe fields:
The Enge function fall-off model
1

F(s) =
( ) 1+exp(a1+a2-(S/D)+...+a6-(S/D)5)
where D is the full aperture.
Or, any arbitrary model including the measured data representation.

— Solenoid fields including the fringe fields.
— Measured fields: E.g. Use Gaussian wevelet representation.
— Ete. etc.



Dipole Enge Function (COSY default)
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DA Fixed Point PDE Solvers

The DA fixed point theorem allows to solve PDEs iteratively in
finitely many steps by rephrasing them in terms of a fixed point problem.
Consider the rather general PDE

0 0 0 0 0 0
Cl,l% (CLQ%V) + bla_y (bga—y‘/) -+ 61& (CQ@V) — O,

where a;, b;, ¢; are functions of z, v, 2
The PDE is re-written in fixed point form as

e [ 505,
LR (o () 2 ()

Assume the derivatives of V' and 0V /0y with respect to x and z are known
in the plane y = 0. Then the right hand side is contracting with respect
to y (which is necessary for the DA fixed point theorem), and the various
orders in y can be iteratively calculated by mere iteration.




— Extract from COSY INFINITY 9.1 Beam Physics Manual —

3.3.2 Bending Elements

COSY INFINITY supports both magnetic and electrostatic elements including so called combined function
elements with superimposed multipoles.

The following commands let an inhomogeneous combined function bending magnet and a combined
function electrostatic deflector act on the map:

MS <radius> <angle> <aperture> <ni; > <ng > <ng> <ng > <ns > ;
ES <radius> <angle> <aperture> <mnj > <ng > <ng > <ng > <ns>;

The radius is measured in meters, the angle in degrees, and the aperture is in meters and corresponds to
half of the gap width. The indices n; describe the midplane radial field dependence which is given by

5 i
x
F(:L’):Fo' I—Zni~ (—> ‘|,
i=1 "o
where 1 is the bending radius. Note that an electric cylindrical condenser has ny =1, no = —1, ng = 1,
ny = —1, ns = 1, etc, and an electric spherical condenser has ny = 2, no = —3, ng =4, ny = —5, n5 = 6,

etc. Homogeneous dipole magnets have n; = 0.

There are various specialized electrostatic deflectors.

ECL <radius> <angle> <aperture> ;
invokes an electrostatic cylindrical deflector, and the element
ESL <radius> <angle> <aperture> ;

invokes an electrostatic spherical deflector.



A Subtle Problem to Deal with Fringe Fields

The trajectory differs from that of the idealized one.

If a hard edge model is used at the initial planning stage,

one would encounter the necessity to adjust the system.

— The degree of the severity depends on the system parameters.
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An illustrating example:
A homogeneous bending magnet with fringe fields.









Fringe Fields and Their Nonlinearities

» Fringe fields are often the main source of (non-deliberate)
nonlinearities

» In main fields, one of course attempts very carefully to keep
the field constant in direction of reference orbit, and imposes
specific axial dependencies

> In fringe fields, there is natural nonlinearity due to unavoidable
curvature of electric or magnetic field lines.

» These curvatures of fields affect particles at different distances
from reference orbit differently, and because of curvature, they
do so nonlinearly.

> All these things are unavoidable; they are a direct consequence
of Maxwell’s equations.



The Pain with Electrostatic Elements

» Unless one is very careful, there will be various undesirable
effects:

» The motion from before to after the element satisfies energy
conservation, but the integrator does not know this

» Repeated small violations of energy conservation can lead to
either oscillations, or big long term effects

» Particular problem: due to offset of reference orbit, it is very
useful to re-align elements. This is normally done after each
part:

> After entrance fringe field, after main field, after exit fringe
field

» Each re-alignment causes small change in geometry, and hence
small change in potential!



Electrostatic Elements - Study Case -

A cylindrical element with fringe fields (22.5°)
e Fields, especially fringe fields

e Reference orbits

e COSY fringe field computation modes FR 3 and FR 2.5

—FR 2.5: Computes through the main and the fringe fields
— FR 3: Further, preserves the mirror symmetry



*xx*x*x ES cylindrical FR 3 *****

0.8764065 -0.2498426E-1 0.000000
9.282307 0.8764065 0.000000
0.000000 0.000000 1.000588
0.000000 0.000000 9.686087
0.000000 0.000000 0.000000
1.697380 0.3431232 0.000000

Reversed Map

0.8764065 -0.2498426E-1 0.000000
9.282307 0.8764065 0.000000
0.000000 0.000000 1.000588
0.000000 0.000000 9.686087
0.000000 0.000000 0.000000
1.697380 0.3431232 0.000000

*xxxx ES cylindrical FR 2.5 *****

0.8764077 -0.2498421E-1 0.000000
9.282277 0.8764068 0.000000
0.000000 0.000000 1.000588
0.000000 0.000000 9.686121
0.000000 0.000000 0.000000
1.697364 0.3431199 0.000000

Reversed Map

0.8764068 -0.2498421E-1 0.000000
9.282277 0.8764077 0.000000
0.000000 0.000000 1.000590
0.000000 0.000000 9.686121
0.000000 0.000000 0.000000
1.697352 0.3431202 0.000000

0.000000 -0.3431232
0.000000 -1.697380
0.1214327E-3 0.000000
1.000588 0.000000
0.000000 1.000000
0.000000 1.712180
0.000000 -0.3431232
0.000000 -1.697380
0.1214327E-3 0.000000
1.000588 0.000000
0.000000 1.000000
0.000000 1.712180
0.000000 -0.3431202
0.000000 -1.697352
0.1216104E-3 0.000000
1.000590 0.000000
0.000000 1.000000
0.000000 1.712164
0.000000 -0.3431199
0.000000 -1.697364
0.1216104E-3 0.000000
1.000588 0.000000
0.000000 1.000000
0.000000 1.712164

The linear part of the nonlinear transfer maps
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-0.9774877  -1.078548 0.00 0.00
0.03521565 -0.9841743 0.00 0.00
0.00 0.00 -0.5176308  -10.90340 COSY INFINITY
0.00 0.00 0.06520659  -0.5583641
-0.9774876  -1.0785556 0.00 0.00
0.03521571  -0.984175 0.00 0.00
0.00 0.00 -0.5176308  -10.90340 MADS
0.00 0.00 0.06520659  -0.5583641
-0.9774910  -1.0783900 0.00 0.00
0.03521423  -0.984180 0.00 0.00
0.00 0.00 -0.5176260  -10.90340 ZGOUBI
0.00 0.00 06520679  -0.5583590

Table 1. First order transfer matrices for the three codes without fringe fields. Note that COSY INFINITY
and MADS use transfer matrices and thus naturally agree to high accuracy, whereas ZGOUBI calculates
the transfer map as a result of integration of nearby orbits which is slightly less accurate.



Figure 2. Second order tracking in the horizontal plane created by COSY INFINITY (left) and MADS
(center), compared with ZGOUBI (right) which does not use transfer maps, under identical initial con-
ditions and lattice parameters. No symplectification is used, showing that second order is insufficient to
describe the dynamics.

Figure 3. Varying transverse initial conditions from 1 cm to 9 cm in the horizontal plane for second
order tracking with COSY INFINITY (left) and MADS (center) and compared with ZGOUBI (right).
Symplectic tracking is enabled in COSY INFINITY and MADS. This is not available in ZGOUBI, which
shows a widening of the orbit bands indicative of violation of symplecticity.

Figure 4. Same tracking as Figure 3, now utilizing COSY INFINITY’s 9th order tracking without sym-
plectification, still without fringe fields. The high order of the map and resulting accuracy avoids the
violation of symplecticity visible in Figure 2. Even to this high order, there is very little nonlinearity
evident in the dynamics.



Fringe Fields

@ So far everything is fine, but now we would like to introduce fringe
fields.

@ COSY Infinity has the convenience of enabling a default set of fringe
fields with a single command, "FR 3".

Here is the transfer matrix with fringe fields turned on:

-0.9739104 1.954368 0.00 0.00

0.01832738 -1.063567 0.00 0.00
0.00 0.00 —0.7993542 —6.705731
0.00 0.00 0.05219644 —0.8131372

Notice that the motion in the horizontal direction

is now unstable (| Trace| > 2) MICHIGAN STATE

UNIVERSITY



Fringe Fields - Adjusting the lattice
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Quadrupole Strength Adjustments

With these adjustments, we are able to recreate the original design transfer matrix

Original
—0.9774877 —1.078547 0 0
0.03521565 —0.9841743 0 0
0 0 —0.5176308 —10.90340
0 0 0.06520659 —0.5583641

vx = 0.5312127004376005 v, = 0.6595904961761281

Adjusted
—0.9774877 —1.078548 0.00 0.00
0.03521565 —0.9841743 0.00 0.00
0.00 0.00 —0.5176308 —10.90340
0.00 0.00 0.06520659 —0.5583641

vy = 0.5312128411224102 v, = 0.6595905356121318
With these new quad strengths in hand, we can run side by side comparisons with
Zgoubi, which also has full fringe field modeling for quads and dipoles.



COSY INFINITY

Figure 5. COSY INFINITY 9th order tracking with full fringe field simulation capabilities in vertical
(left) and horizontal (right) planes.

ZGOUBI

Figure 6. ZGOUBI tracking with full fringe field simulation capabilities in vertical (left) and horizontal
(right) planes. The fringe field Enge coefficients are identical to those used in COSY INFINITY. The
rough structure and stability boundaries are similar to those of Figure 5, but symplecticity violations are
apparent.
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MADS Fringe Fields
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Tracking | Map Order | Out of Plane | Symplect

Method Order
Zgoubi| Integ NA 3 No
MADS8 | Map 2,3 2 Yes

COSY | Map oo(9) 0o(9) Yes




CPU time (seconds

Number of Turns |-~Fesr INFINIT(Y ZG())UBI

10° 25.082 183.78

10* 25.297 1831.4

10° 27.132 18717

10° 45.343

107 228.26

108 2049.4

10° 20193

Table 3. Comparison of tracking execution times of COSY INFINITY and ZGOUBI at their respective
maximum precisions (order 9 transfer map for COSY INFINITY, 5th order Taylor series integration for
ZGOUBI). ZGOUBI execution times are proportional to the number of turns and around 0.187 seconds
per turn per particle. COSY INFINITY requires an initial investment in the computation of a transfer map,
but for larger turn numbers tracks for 1/50000 of a second per turn.
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Summary of Comparison Studies with/without Fringe Fields

o COSY Infinity, Zgoubi, MADS8 agree in SCOFF

o High order fringe field tracking is critical to understanding the
dynamic aperture of even simple lattices

o COSY Infinity and Zgoubi agree qualitatively when tracking through
fringe fields

o MADS can handle fringe fields, but only in "thick”, nonsymplectic
dipoles. Thin elements + fringe a possibility.

@ Zgoubi has a powerful graphics output tool - zpop - to assist in
understanding the dynamics

o COSY Infinity is a dynamic programming framework; MADS is
semi-dynamic (variables, element expansions); ZGoubi is static
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Summary

e Methods of studying charged particle motions

— Transfer maps

— The DA (Differential Algebraic) method

— The DA PDE solver for obtaining electromagnetic fields
— Repetitive trackings

e Treatment of fringe fields and special cautions
e Fixamples

— Fringe field modes FR 2.5 & 3 in COSY INFINITY

— Tracking studies for the COSY Jiilich storage ring
Comparisons between COSY INF., ZGOUBI, MAD

— Modeling the fringe field fall-offs (the Enge function)
for various E-deflector options at COSY Jiilich
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CPO9 2014, Brno, Czech Republic

Zgoubi fringe fields

@ To implement fringe fields in Zgoubi, we need the Enge coefficients used by
COSY Infinity.

@ |t is easy to implement these values in Zgoubi.

@ Zgoubi requires you to specify how accurately you integrate through the
fringe fields. (Integration zone extent, fringe field extent, step size)

Entrance Exl

EFB 5 £FB

Figure 33: Scheme of the longitudinal field gradiéhty ).
(OX) is thelongitudinal axis of the reference frani@ XY, Z) of zgoubi
. The length of the element i$L, but trajectories are ray-traced fronX
to XL + X, by means of prior and further automatic changes of frame

Robert Hipple (PA-MSU) High-Order Modeling of Fringe Field Effects August 31, 2014 23 /55



CPO9 2014, Brno, Czech Republic

MADS Fringe Fields

MADS also has provisions for fringe fields, but only in the thick bending elements.
We can add approximate fringe fields to the aforementioned thin-element model
using the fringe integral techniques "Fringe Integral (FINT)" techniques
developed by Wollnik, Matsuda, Brown, etc. We must provide the value of FINT
as a parameter to the software.
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