Dark Matter with *t*-channel mediators

Sebastian Wild

Technische Universität München

MIAPP mini-workshop on dark mediators, February 11, 2015

Dark Matter with *t*-channel mediators: overview

Simplified models for Dark Matter and a *t*-channel mediator:

	Dark Matter	Mediator	Interaction
(I)	Majorana fermion χ	Scalar η	$y_{yuk}\chi\eta f_SM$
(11)	Dirac fermion χ	Scalar η	$y_{yuk}\chi\eta f_SM$
(111)	Real scalar ϕ	Vector-like fermion ψ	$y_{yuk}\phi\psi f_{SM}$

Dark Matter with *t*-channel mediators: overview

Simplified models for Dark Matter and a *t*-channel mediator:

	Dark Matter	Mediator	Interaction
(I)	Majorana fermion χ	Scalar η	$y_{yuk}\chi\eta f_SM$
(11)	Dirac fermion χ	Scalar η	$y_{yuk}\chi\eta f_SM$
(111)	Real scalar ϕ	Vector-like fermion ψ	$y_{yuk}\phi\psi f_{SM}$

Only three parameters m_{DM} , m_{mediator} , y_{yuk} control

- a) relic density
- b) direct detection
- c) indirect detection
- d) collider phenomenology

$$\Rightarrow$$

- highly testable models
- ideal for complementarity studies

Model (I): Majorana fermion Dark Matter

	Dark Matter	Mediator	Interaction
(I)	Majorana fermion χ	Scalar η	$y_{yuk}\chi\eta f_{SM}$

 \hookrightarrow see also the talk tomorrow by Mathias Garny

Important feature of this model: $\chi\chi \to f\bar{f}$ is velocity or helicity suppressed

$$\hookrightarrow \langle \sigma v \rangle_{\chi\chi \to f\bar{f}} = (\dots) \cdot v^2 + (\dots) \cdot (m_f/m_\chi)^2$$

 \hookrightarrow dominant annihilation channels for $v_{\chi} \simeq 0$ include higher-order effects:

virtual internal bremsstrahlung

one-loop annihilation into gauge bosons

 \hookrightarrow keeping the mediator in the calculation plays a crucial role!

Model (I): Majorana fermion Dark Matter

	Dark Matter	Mediator	Interaction
(I)	Majorana fermion χ	Scalar η	$y_{yuk}\chi\eta f_{SM}$
L			

 \hookrightarrow see also the talk tomorrow by Mathias Garny

Possible search strategies for this model:

- Search for sharp gamma-ray features with Fermi LAT, H.E.S.S.
- Search for ν 's from the Sun with IceCube

 10^{4}

Model (II): Dirac fermion Dark Matter

	Dark Matter	Mediator	Interaction
(11)	Dirac fermion χ	Scalar η	$y_{yuk}\chi\eta f_{SM}$

Strong limits from direct detection induced by one-loop diagrams:

- One-loop induced vector-vector coupling $\bar{\chi}\gamma^{\mu}\chi\bar{N}\gamma_{\mu}N$, even if DM is leptophilic or couples only to e.g. *b*-quarks
- Again, keeping explicitly the mediator η in the calculation is crucial!

Model (II): Dirac fermion Dark Matter

	Dark Matter	Mediator	Interaction
(11)	Dirac fermion χ	Scalar η	$y_{yuk}\chi\eta f_{SM}$

- ullet Even for leptophilic scenarios, LUX already probes DM masses up to \sim TeV
- The next-generation direct detection experiments will be able to probe practically the whole thermal perturbative parameter space!

- ullet Even for leptophilic scenarios, LUX already probes DM masses up to \sim TeV
- The next-generation direct detection experiments will be able to probe practically the whole thermal perturbative parameter space!

Model (III): Real scalar Dark Matter

	Dark Matter	Mediator	Interaction
(111)	Real scalar ϕ	Vector-like fermion ψ	$y_{yuk}\phi\psi f_{SM}$

This model has a unique feature: $\phi\phi
ightarrow far{f}$ is **d-wave** suppressed ($\propto v^4$)

 $\hookrightarrow \text{ large thermal value of } y_{\text{yuk}}$

 $\hookrightarrow \underline{ \text{ large indirect detection signals }} \text{ via } \phi \phi \to f \bar{f} \gamma \text{ and } \phi \phi \to \gamma \gamma$

Model (III): Real scalar Dark Matter

	Dark Matter	Mediator	Interaction
(111)	Real scalar ϕ	Vector-like fermion ψ	$y_{yuk}\phi\psi f_{SM}$

This model has a unique feature: $\phi\phi
ightarrow far{f}$ is **d-wave** suppressed ($\propto v^4$)

 \hookrightarrow large thermal value of y_{yuk}

 $\hookrightarrow \underline{ \text{ large indirect detection signals via } \phi \phi \to f \bar{f} \gamma \text{ and } \phi \phi \to \gamma \gamma$

- Searches for **spectral features** with FERMI and H.E.S.S. already constrain a significant part of the thermal parameter space (left plot, blue regions)
- CTA (right plot, blue region) will cover the whole thermal perturbative parameter space!

Simplified models of Dark Matter with a t-channel mediator have an interesting and rich phenomenology:

- Order-of-magnitude differences in direct and indirect detection rates, depending on nature of DM and mediator
- In practically all cases, higher-order effects can be crucial: $2 \rightarrow 3$ annihilations, one-loop scattering diagrams, . . .
- Complementarity between direct & indirect searches for DM ↔ collider searches for the mediator itself

In many of these models, upcoming experiments like Xenon-1T or CTA will be able to probe significant parts of the remaining thermal perturbative parameter space

Backup slides

Real scalar Dark Matter vs. Majorana Dark Matter

Real scalar Dark Matter: effect of coupling to the SM Higgs

